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PREFACE TO THE SIXTH EDITION      
 

 

 

“No single tool has contributed more to the progress of 
 modern physics than the diffraction grating …”1 

 

 Newport Corporation is proud to build upon the heritage of technical 
excellence that began when Bausch & Lomb produced its first high-quality 
master grating in the late 1940s.  A high-fidelity replication process was 
subsequently developed to make duplicates of the tediously generated master 
gratings.  This process became the key to converting diffraction gratings from 
academic curiosities to commercially-available optical components, which in 
turn enabled gratings to essentially replace prisms as the optical dispersing 
element of choice in modern laboratory instrumentation. 

 For several years, since its introduction in 1970, the Diffraction Grating 
Handbook was the primary source of information of a general nature regarding 
diffraction gratings.  In 1982, Dr. Michael Hutley of the National Physical 
Laboratory published Diffraction Gratings, a monograph that addresses in more 
detail the nature and uses of gratings, as well as their manufacture.  In 1997, Dr. 
Erwin Loewen, emeritus director of the Bausch & Lomb grating laboratory who 
wrote the original Handbook thirty-five years ago, wrote with Dr. Evgeny 
Popov (now with the Laboratoire d’Optique Électromagnétique) a very 
thorough and complete monograph entitled Diffraction Gratings and 
Applications.  Readers of this Handbook who seek additional insight into the 
many aspects of diffraction grating behavior, manufacture and use are 
encouraged to turn to these two books. 

 
  Christopher Palmer 
  Newport Corporation 
  Rochester, New York 
 
  January 2005 

                                                           
1 G. R. Harrison, “The production of diffraction gratings. I. Development of the ruling art,” J. Opt. 
Soc. Am. 39, 413-426 (1949). 
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1. SPECTROSCOPY AND GRATINGS      
 

 

 

“It is difficult to point to another single device that has brought more 
important experimental information to every field of science than the 
diffraction grating.  The physicist, the astronomer, the chemist, the 
biologist, the metallurgist, all use it as a routine tool of unsurpassed 
accuracy and precision, as a detector of atomic species to determine the 
characteristics of heavenly bodies and the presence of atmospheres in 
the planets, to study the structures of molecules and atoms, and to 
obtain a thousand and one items of information without which modern 
science would be greatly handicapped.” 

 
⎯  J. Strong, “The Johns Hopkins University and diffraction gratings,” 

  J. Opt. Soc. Am. 50, 1148-1152 (1960), quoting G. R. Harrison. 

 

 

1.0. INTRODUCTION 

 Spectroscopy is the study of electromagnetic spectra – the wavelength 
composition of light – due to atomic and molecular interactions.   For many 
years, spectroscopy has been important in the study of physics, and it is now 
equally important in astronomical, biological, chemical, metallurgical and other 
analytical investigations.  The first experimental tests of quantum mechanics 
involved verifying predictions regarding the spectrum of hydrogen with grating 
spectrometers.  In astrophysics, diffraction gratings provide clues to the 
composition of and processes in stars and planetary atmospheres, as well as 
offer clues to the large-scale motions of objects in the universe.  In chemistry, 
toxicology and forensic science, grating-based instruments are used to 
determine the presence and concentration of chemical species in samples.  In 
telecom-munications, gratings are being used to increase the capacity of fiber-
optic networks using wavelength division multiplexing (WDM).  Gratings have 
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also found many uses in tuning and spectrally shaping laser light, as well as in 
chirped pulse amplification applications. 

 The diffraction grating is of considerable importance in spectroscopy, due 
to its ability to separate (disperse) polychromatic light into its constituent 
monochromatic components.  In recent years, the spectroscopic quality of 
diffraction gratings has greatly improved, and Newport has been a leader in this 
development. 

 The extremely high accuracy required of a modern diffraction grating 
dictates that the mechanical dimensions of diamond tools, ruling engines, and 
optical recording hardware, as well as their environmental conditions, be con-
trolled to the very limit of that which is physically possible.  A lower degree of 
accuracy results in gratings that are ornamental but have little technical or scien-
tific value.  The challenge to produce precision diffraction gratings has attracted 
the attention of some of the world's most capable scientists and technicians.  
Only a few have met with any appreciable degree of success, each limited by the 
technology available. 

1.1. THE DIFFRACTION GRATING 

 A diffraction grating is a collection of reflecting (or transmitting) elements 
separated by a distance comparable to the wavelength of light under study.  It 
may be thought of as a collection of diffracting elements, such as a pattern of 
transparent slits (or apertures) in an opaque screen, or a collection of reflecting 
grooves on a substrate (also called a blank).  In either case, the fundamental 
physical characteristic of a diffraction grating is the spatial modulation of the 
refractive index.  Upon diffraction, an electromagnetic wave incident on a 
grating will have its electric field amplitude, or phase, or both, modified in a 
predictable manner, due to the periodic variation in refractive index in the 
region near the surface of the grating. 

 A reflection grating consists of a grating superimposed on a reflective 
surface, whereas a transmission grating consists of a grating superimposed on a 
transparent surface.   

 A master grating (also called an original) is a grating whose surface-relief 
pattern is created “from scratch”, either by mechanical ruling (see Chapter 3) or 
holographic recording (see Chapter 4).  A replica grating is one whose surface-
relief pattern is generated by casting or molding the relief pattern of another 
grating (see Chapter 5). 
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1.2. A BRIEF HISTORY OF GRATING DEVELOPMENT 

 The first diffraction grating was made by an American astronomer, David 
Rittenhouse, in 1785, who reported constructing a half-inch wide grating with 
fifty-three apertures.2  Apparently he developed this prototype no further, and 
there is no evidence that he tried to use it for serious scientific experiments. 

 In 1821, most likely unaware of the earlier American report, Joseph von 
Fraunhofer began his work on diffraction gratings.3  His research was given 
impetus by his insight into the value that grating dispersion could have for the 
new science of spectroscopy.  Fraunhofer's persistence resulted in gratings of 
sufficient quality to enable him to measure the absorption lines of the solar 
spectrum, now generally referred to as the Fraunhofer lines.  He also derived the 
equations that govern the dispersive behavior of gratings.  Fraunhofer was in-
terested only in making gratings for his own experiments, and upon his death, 
his equipment disappeared. 
 By 1850, F.A. Nobert, a Prussian instrument maker, began to supply 
scientists with gratings superior to Fraunhofer's.  About 1870, the scene of 
grating development returned to America, where L.M. Rutherfurd, a New York 
lawyer with an avid interest in astronomy, became interested in gratings.  In just 
a few years, Rutherfurd learned to rule reflection gratings in speculum metal 
that were far superior to any that Nobert had made.  Rutherfurd developed 
gratings that surpassed even the most powerful prisms.  He made very few 
gratings, though, and their uses were limited. 

 Rutherfurd's part-time dedication, impressive as it was, could not match the 
tremendous strides made by H.A. Rowland, professor of physics at the Johns 
Hopkins University.  Rowland's work established the grating as the primary 
optical element of spectroscopic technology.4  Rowland constructed sophis-
ticated ruling engines and invented the concave grating, a device of spectacular 
value to modern spectroscopists.  He continued to rule gratings until his death in 
1901. 

                                                           
2 D. Rittenhouse, “Explanation of an optical deception,” Trans. Amer. Phil. Soc. 2, 37-42 (1786). 
3 J. Fruanhofer, “Kurtzer Bericht von den Resultaten neuerer Versuche über die Sesetze des lichtes, 
und die Theorie derselbem,” Ann. D. Phys. 74, 337-378 (1823). 
4 H. Rowland, “Preliminary notice of results accomplished on the manufacture and theory of 
gratings for optical purposes,” Phil. Mag. Suppl. 13, 469-474 (1882);  G. R. Harrison and E. G. 
Loewen, “Ruled gratings and wavelength tables,” Appl. Opt. 15, 1744-1747 (1976). 
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 After Rowland's great success, many people set out to rule diffraction 
gratings.  The few who were successful sharpened the scientific demand for 
gratings.  As the advantages of gratings over prisms and interferometers for 
spectroscopic work became more apparent, the demand for diffraction gratings 
far exceeded the supply. 

1.3. HISTORY OF THE NEWPORT GRATINGS OPERATION 

 In 1947, Bausch & Lomb decided to make precision gratings available 
commercially.  In 1950, through the encouragement of Prof. George R. Harrison 
of MIT, David Richardson and Robert Wiley of Bausch & Lomb succeeded in 
producing their first high quality grating.  This was ruled on a rebuilt engine that 
had its origins in the University of Chicago laboratory of Prof. Albert A. 
Michelson.  A high fidelity replication process was subsequently developed, 
which was crucial to making replicas, duplicates of the painstakingly-ruled 
master gratings.  A most useful feature of modern gratings is the availability of 
an enormous range of sizes and groove spacings (up to 10,800 grooves per 
millimeter), and their enhanced quality is now almost taken for granted.  In 
particular, the control of groove shape (or blazing) has increased spectral effi-
ciency dramatically.  In addition, interferometric and servo control systems have 
made it possible to break through the accuracy barrier previously set by the 
mechanical constraints inherent in the ruling engines.5 
 During the subsequent decades, we have produced thousands of master 
gratings and many times that number of high quality replicas.  In 1985, Milton 
Roy Company acquired Bausch & Lomb's gratings and spectrometer 
operations; in 1995 it sold these operations to Life Sciences International plc as 
part of Spectronic Instruments, Inc. – at this time, the gratings operations took 
the name Richardson Grating Laboratory.  In 1997, Spectronic Instruments 
was acquired by Thermo Electron Corporation, and the gratings operation was 
called Thermo RGL for a time before being transferred to Thermo Electron’s 
subsidiary, Spectra-Physics.  
 In 2004, Spectra-Physics was acquired by Newport Corporation, a leading 
global supplier of advanced-technology products and systems to the 
semiconductor, communications, electronics, research and life and health 

                                                           
5 G. R. Harrison and G. W. Stroke, “Interferometric control of grating ruling with continuous 
carriage advance,” J. Opt. Soc. Am. 45, 112-121 (1955). 
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sciences markets.  Newport provides components and integrated subsystems to 
manufacturers of semiconductor processing equipment, biomedical instru-
mentation and medical devices, advanced automated assembly and test systems 
to manufacturers of communications and electronics devices, and a broad array 
of high-precision systems, components and instruments to commercial, 
academic and government customers worldwide.  Newport’s innovative 
solutions leverage its expertise in photonics instrumentation, lasers and light 
sources, precision robotics and automation, sub-micron positioning systems, 
vibration isolation, optical components and optical subsystems to enhance the 
capabilities and productivity of its customers’ manufacturing, engineering and 
research applications.  

 During these changes in corporate ownership, we have continued to uphold 
the traditions of precision and quality established by Bausch & Lomb over fifty 
years ago. 

1.4. DIFFRACTION GRATINGS FROM NEWPORT 

 The gratings operation of Newport Corporation, which is known throughout 
the world as “the Grating Lab”, is a unique facility in Rochester, New York, 
containing not only the Newport ruling engines and holographic recording 
chambers (both of which are used for making master gratings) but the 
replication and associated testing and inspection facilities for supplying 
replicated gratings in commercial quantities. 

 To achieve the high practical resolution characteristic of high-quality 
gratings, a precision of better than 1 nm (= 0.001 µm) in the spacing of the 
grooves must be maintained.  Such high precision requires extraordinary control 
over temperature fluctuation and vibration in the ruling engine environment.  
This control has been established by the construction of specially-designed 
ruling cells that provide environments in which temperature stability is 
maintained at ± 0.01 °C for weeks at a time, as well as vibration isolation that 
suppresses ruling engine displacement to less than 0.025 µm.  The installation 
can maintain reliable control over the important environmental factors for peri-
ods in excess of six weeks, the time required to rule large, finely-spaced 
gratings. 

 Newport has facilities for coating and testing master and replica substrates, 
as well as special areas for the controlled replication process itself.  In order to 
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produce the finest gratings with maximum control and efficiency, even storage, 
packing and shipping of finished gratings are part of the same facility. 

 In addition to burnishing gratings with a diamond tool, an optical 
interference pattern can be used to produce holographic gratings.   Master 
holographic gratings require strict maintenance of the recording optical system 
to obtain the best contrast and fringe structure.  Newport produces holographic 
gratings in its dedicated recording facility, in whose controlled environment 
thermal gradients and air currents are minimized and fine particulates are 
filtered from the air.   These master gratings are replicated in a process identical 
to that for ruled master gratings. 
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22..  THE PHYSICS OF DIFFRACTION 
GRATINGS     

 

 

2.1. THE GRATING EQUATION 

 When monochromatic light is incident on a grating surface, it is diffracted 
into discrete directions.  We can picture each grating groove as being a very 
small, slit-shaped source of diffracted light.  The light diffracted by each groove 
combines to form set of diffracted wavefronts.  The usefulness of a grating 
depends on the fact that there exists a unique set of discrete angles along which, 
for a given spacing d between grooves, the diffracted light from each facet is in 
phase with the light diffracted from any other facet, leading to constructive 
interference. 

 Diffraction by a grating can be visualized from the geometry in Figure 2-1, 
which shows a light ray of wavelength λ incident at an angle α and diffracted by 
a grating (of groove spacing d, also called the pitch) along at set of angles {βm}.  
These angles are measured from the grating normal, which is shown as the 
dashed line perpendicular to the grating surface at its center.  The sign con-
vention for these angles depends on whether the light is diffracted on the same 
side or the opposite side of the grating as the incident light.  In diagram (a), 
which shows a reflection grating, the angles α > 0 and β1 > 0 (since they are 
measured counter-clockwise from the grating normal) while the angles β0 < 0 
and β–1 < 0 (since they are measured clockwise from the grating normal).  
Diagram (b) shows the case for a transmission grating.  
 By convention, angles of incidence and diffraction are measured from the 
grating normal to the beam.  This is shown by arrows in the diagrams.  In both 
diagrams, the sign convention for angles is shown by the plus and minus 
symbols located on either side of the grating normal.  For either reflection or 
transmission gratings, the algebraic signs of two angles differ if they are mea-
sured from opposite sides of the grating normal.  Other sign conventions exist, 
so care must be taken in calculations to ensure that results are self-consistent.   
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Figure 2-1.  Diffraction by a plane grating. A beam of monochromatic light of 
wavelength λ is incident on a grating and diffracted along several discrete paths.  The 
triangular grooves come out of the page; the rays lie in the plane of the page.  The sign 
convention for the angles α and β is shown by the + and – signs on either side of the 
grating normal.  (a) A reflection grating: the incident and diffracted rays lie on the same 
side of the grating.  (b) A transmission grating: the diffracted rays lie on the opposite 
side of the grating from the incident ray. 
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 Another illustration of grating diffraction, using wavefronts (surfaces of 
constant phase), is shown in Figure 2-2.  The geometrical path difference 
between light from adjacent grooves is seen to be d sinα + d sinβ.  [Since β < 0, 
the term d sinβ is negative.]  The principle of constructive interference dictates 
that only when this difference equals the wavelength λ of the light, or some 
integral multiple thereof, will the light from adjacent grooves be in phase 
(leading to constructive interference).  At all other angles the wavelets 
originating from the groove facets will interfere destructively.  
 

 

 

 ray 1 
 ray 2 

d      

β  

α  

 A 

 B 

+   –

d sinα d  sin β 

grating 
normal 

 

Figure 2-2.  Geometry of diffraction, for planar wavefronts.  Two parallel rays, labeled 1 
and 2, are incident on the grating one groove spacing d apart and are in phase with each 
other at wavefront A.  Upon diffraction, the principle of constructive interference implies 
that these rays are in phase at diffracted wavefront B if the difference in their path 
lengths, dsinα + dsinβ, is an integral number of wavelengths; this in turn leads to the 
grating equation.   

 

 These relationships are expressed by the grating equation 

  mλ = d (sinα + sinβ), (2-1) 
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which governs the angular locations of the principal intensity maxima when 
light of wavelength λ is diffracted from a grating of groove spacing d.  Here m 
is the diffraction order (or spectral order), which is an integer.  For a particular 
wavelength λ, all values of m for which |mλ/d| < 2 correspond to propagating 
(rather than evanescent) diffraction orders.  The special case m = 0 leads to the 
law of reflection β = –α. 
 It is sometimes convenient to write the grating equation as 

  Gmλ = sinα + sinβ, (2-2) 

where G = 1/d is the groove frequency or groove density, more commonly called 
"grooves per millimeter".  

 Eq. (2-1) and its equivalent Eq. (2-2) are the common forms of the grating 
equation, but their validity is restricted to cases in which the incident and 
diffracted rays lie in a plane which is perpendicular to the grooves (at the center 
of the grating).  The majority of grating systems fall within this category, which 
is called classical (or in-plane) diffraction.  If the incident light beam is not 
perpendicular to the grooves, though, the grating equation must be modified: 

  Gmλ = cosε (sinα + sinβ). (2-3) 

Here ε is the angle between the incident light path and the plane perpendicular 
to the grooves at the grating center (the plane of the page in Figure 2-2).  If the 
incident light lies in this plane, ε = 0 and Eq. (2-3) reduces to the more familiar 
Eq. (2-2).  In geometries for which ε ≠ 0, the diffracted spectra lie on a cone 
rather than in a plane, so such cases are termed conical diffraction. 
 For a grating of groove spacing d, there is a purely mathematical relation-
ship between the wavelength and the angles of incidence and diffraction.  In a 
given spectral order m, the different wavelengths of polychromatic wavefronts 
incident at angle α are separated in angle: 

  β(λ) = ⎟
⎠
⎞

⎜
⎝
⎛ −− αλ sinsin 1

d
m . (2-4) 

When m = 0, the grating acts as a mirror, and the wavelengths are not separated 
(β = –α for all λ); this is called specular reflection or simply the zero order. 



 

 23

 A special but common case is that in which the light is diffracted back 
toward the direction from which it came (i.e., α = β); this is called the Littrow 
configuration, for which the grating equation becomes 

  mλ = 2d sinα,        in Littrow. (2-5) 

 In many applications a constant-deviation monochromator mount is used, in 
which the wavelength λ is changed by rotating the grating about the axis 
coincident with its central ruling, with the directions of incident and diffracted 
light remaining unchanged.  The deviation angle 2K between the incidence and 
diffraction directions (also called the angular deviation) is 

  2K = α – β = constant, (2-6) 

while the scan angle φ, which varies with λ and is measured from the grating 
normal to the bisector of the beams, is 

  2φ = α + β. (2-7) 

Note that φ changes with λ (as do α and β).  In this case, the grating equation 
can be expressed in terms of φ and the half deviation angle K as 

  mλ = 2d cosK sinφ. (2-8) 

This version of the grating equation is useful for monochromator mounts (see 
Chapter 7).  Eq. (2-8) shows that the wavelength diffracted by a grating in a 
monochromator mount is directly proportional to the sine of the scan angle φ 
through which the grating rotates, which is the basis for monochromator drives 
in which a sine bar rotates the grating to scan wavelengths (see Figure 2-3). 

 For the constant-deviation monochromator mount, the incidence and 
diffraction angles can be expressed simply in terms of the scan angle φ and the 
half-deviation angle K via 

  α(λ) = φ(λ) + K (2-9) 

and 
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  β(λ) = φ(λ) – K , (2-10) 

where we show explicitly that α, β and φ depend on the wavelength λ. 

 

 

 

x
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(out of page)

screw
 

 

Figure 2-3.  A sine bar mechanism for wavelength scanning.  As the screw is extended 
linearly by the distance x shown, the grating rotates through an angle φ in such a way that 
sinφ is proportional to x. 

2.2. DIFFRACTION ORDERS 

 Generally several integers m will satisfy the grating equation – we call each 
of these values a diffraction order. 

2.2.1. Existence of diffraction orders  

 For a particular groove spacing d, wavelength λ and incidence angle α, the 
grating equation (2-1) is generally satisfied by more than one diffraction 
angle β.  In fact, subject to restrictions discussed below, there will be several 
discrete angles at which the condition for constructive interference is satisfied.  
The physical significance of this is that the constructive reinforcement of 
wavelets diffracted by successive grooves merely requires that each ray be 
retarded (or advanced) in phase with every other; this phase difference must 
therefore correspond to a real distance (path difference) which equals an integral 
multiple of the wavelength.  This happens, for example, when the path differ-
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ence is one wavelength, in which case we speak of the positive first diffraction 
order (m = 1) or the negative first diffraction order (m = –1), depending on 
whether the rays are advanced or retarded as we move from groove to groove. 
Similarly, the second order (m = 2) and negative second order (m =    –2) are 
those for which the path difference between rays diffracted from adjacent 
grooves equals two wavelengths. 

 The grating equation reveals that only those spectral orders for which |mλ/d| 
< 2 can exist; otherwise, |sinα + sinβ | > 2, which is physically meaningless.  
This restriction prevents light of wavelength λ from being diffracted in more 
than a finite number of orders.  Specular reflection (m = 0) is always possible; 
that is, the zero order always exists (it simply requires β = –α).   In most cases, 
the grating equation allows light of wavelength λ to be diffracted into both 
negative and positive orders as well.  Explicitly, spectra of all orders m exist for 
which 

  –2d < mλ < 2d,       m an integer. (2-11) 

 For λ/d << 1, a large number of diffracted orders will exist. 

 As seen from Eq. (2-1), the distinction between negative and positive 
spectral orders is that 

  β > –α     for positive orders (m > 0), 

  β < –α     for negative orders (m < 0), (2-12) 

  β = –α      for specular reflection (m = 0). 

This sign convention for m requires that m > 0 if the diffracted ray lies to the left 
(the counter-clockwise side) of the zero order (m = 0), and m < 0 if the 
diffracted ray lies to the right (the clockwise side) of the zero order.  This 
convention is shown graphically in Figure 2-4. 

2.2.2. Overlapping of diffracted spectra 

 The most troublesome aspect of multiple order behavior is that successive 
spectra overlap, as shown in Figure 2-5.  It is evident from the grating equation 
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Figure 2-4.  Sign convention for the spectral order m.  In this example α is positive. 
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Figure 2-5. Overlapping of spectral orders.  The light for wavelengths 100, 200 and 300 
nm in the second order is diffracted in the same direction as the light for wavelengths 
200, 400 and 600 nm in the first order.  In this diagram, the light is incident from the 
right, so α < 0. 
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that light of wavelength λ diffracted by a grating along direction β will be 
accompanied by integral fractions λ/2, λ/3, etc.; that is, for any grating 
instrument configuration, the light of wavelength λ diffracted in the m = 1 order 
will coincide with the light of wavelength λ/2 diffracted in the m = 2 order, etc.  
In this example, the red light (600 nm) in the first spectral order will overlap the 
ultraviolet light (300 nm) in the second order.  A detector sensitive at both 
wavelengths would see both simultaneously.  This superposition of wave-
lengths, which would lead to ambiguous spectroscopic data, is inherent in the 
grating equation itself and must be prevented by suitable filtering (called order 
sorting), since the detector cannot generally distinguish between light of differ-
ent wavelengths incident on it (within its range of sensitivity).  [See also Section 
2.7 below.] 

2.3. DISPERSION 

 The primary purpose of a diffraction grating is to disperse light spatially by 
wavelength.  A beam of white light incident on a grating will be separated into 
its component wavelengths upon diffraction from the grating, with each 
wavelength diffracted along a different direction.  Dispersion is a measure of 
the separation (either angular or spatial) between diffracted light of different 
wavelengths.  Angular dispersion expresses the spectral range per unit angle, 
and linear resolution expresses the spectral range per unit length. 

2.3.1. Angular dispersion   

 The angular spread Δβ of a spectrum of order m between the wavelength λ 
and λ + Δλ can be obtained by differentiating the grating equation, assuming the 
incidence angle α to be constant.  The change D in diffraction angle per unit 
wavelength is therefore 

  D = β
βλ

β sec
cosd

d
d
m

d
m

==  = Gm secβ, (2-13) 

where β is given by Eq. (2-4).  The quantity D is called the angular dispersion.  
As the groove frequency G = 1/d increases, the angular dispersion increases 
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(meaning that the angular separation between wavelengths increases for a given 
order m). 
 In Eq. (2-13), it is important to realize that the quantity m/d is not a ratio 
which may be chosen independently of other parameters; substitution of the 
grating equation into Eq. (2-13) yields the following general equation for the 
angular dispersion: 

  D = 
βλ

βα
λ
β

cos
sinsin

d
d +

= . (2-14) 

For a given wavelength, this shows that the angular dispersion may be 
considered to be solely a function of the angles of incidence and diffraction.  
This becomes even more clear when we consider the Littrow configuration 
(α = β), in which case Eq. (2-14) reduces to 

  D = β
λλ

β tan2
d
d

= ,        in Littrow. (2-15) 

When |β| increases from 10° to 63° in Littrow use, the angular dispersion can be 
seen from Eq. (2-15) to increase by a factor of ten, regardless of the spectral 
order or wavelength under consideration.  Once the diffraction angle β has been 
determined, the choice must be made whether a fine-pitch grating (small d) 
should be used in a low diffraction order, or a coarse-pitch grating (large d) such 
as an echelle grating (see Section 12.5) should be used in a high order.  [The 
fine-pitched grating, though, will provide a larger free spectral range; see 
Section 2.7 below.] 

2.3.2. Linear dispersion   

 For a given diffracted wavelength λ in order m (which corresponds to an 
angle of diffraction β), the linear dispersion of a grating system is the product 
of the angular dispersion D and the effective focal length r'(β) of the system: 

  r' D =  r' β
βλ

β sec
cosd

d
d
rm

d
rm ′

=
′

=   = Gmr' secβ. (2-16) 
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The quantity r' Δβ = Δl is the change in position along the spectrum (a real 
distance, rather than a wavelength).  We have written r'(β) for the focal length 
to show explicitly that it may depend on the diffraction angle β (which, in turn, 
depends on λ). 
 The reciprocal linear dispersion, sometimes called the plate factor P, is 
more often considered; it is simply the reciprocal of r' D, usually measured in 
nm/mm: 

  P= 
rm

d
′
βcos . (2-14’) 

P is a measure of the change in wavelength (in nm) corresponding to a change 
in location along the spectrum (in mm).  It should be noted that the terminology 
plate factor is used by some authors to represent the quantity 1/sinΦ, where Φ is 
the angle the spectrum makes with the line perpendicular to the diffracted rays 
(see Figure 2-6); in order to avoid confusion, we call the quantity 1/sinΦ the 
obliquity factor.  When the image plane for a particular wavelength is not 
perpendicular to the diffracted rays (i.e., when Φ ≠ 90°), P must be multiplied 
by the obliquity factor to obtain the correct reciprocal linear dispersion in the 
image plane. 
 

 

 

diffracted ray 

plane of spectral image 

Φ

 
 

Figure 2-6.  The obliquity angle Φ.  The spectral image recorded need not lie in the plane 
perpendicular to the diffracted ray (i.e., Φ ≠ 90°). 
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2.4. RESOLVING POWER, SPECTRAL RESOLUTION, AND 
BANDPASS 

2.4.1. Resolving power   

 The resolving power R of a grating is a measure of its ability to separate 
adjacent spectral lines of average wavelength λ.  It is usually expressed as the 
dimensionless quantity 

  R =
λ

λ
Δ

. (2-17) 

Here Δλ is the limit of resolution, the difference in wavelength between two 
lines of equal intensity that can be distinguished (that is, the peaks of two 
wavelengths λ1 and λ2 for which the separation |λ1 – λ2| < Δλ will be ambigu-
ous).   Often the Rayleigh criterion is used to determine Δλ – that is, the 
intensity maxima of two neighboring wavelengths are resolvable (i.e., 
identifiable as distinct spectral lines) if the intensity maximum of one 
wavelength coincides with the intensity minimum of the other wavelength.6 
 The theoretical resolving power of a planar diffraction grating is given in 
elementary optics textbooks as  

  R = mN, (2-18) 

where m is the diffraction order and N is the total number of grooves illuminated 
on the surface of the grating.  For negative orders (m < 0), the absolute value of 
R is considered. 

 A more meaningful expression for R is derived below.  The grating 
equation can be used to replace m in Eq. (2-18): 

  R = 
( )

λ
βα sinsin +Nd

. (2-19) 

                                                           
6 D. W. Ball, The Basics of Spectroscopy, SPIE Press (2001), ch. 8. 
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If the groove spacing d is uniform over the surface of the grating, and if the 
grating substrate is planar, the quantity Nd is simply the ruled width W of the 
grating, so  

  R = 
( )

λ
βα sinsin +W

. (2-20) 

As expressed by Eq. (2-20), R is not dependent explicitly on the spectral order 
or the number of grooves; these parameters are contained within the ruled width 
and the angles of incidence and diffraction.  Since  

  | sinα + sinβ | < 2 , (2-21) 

the maximum attainable resolving power is 

  RMAX = 
λ
W2 , (2-22) 

regardless of the order m or number of grooves N under illumination.  This 
maximum condition corresponds to the grazing Littrow configuration, i.e., |α| ≈ 
90° (grazing incidence) and α ≈ β (Littrow). 

 It is useful to consider the resolving power as being determined by the 
maximum phase retardation of the extreme rays diffracted from the grating.7  
Measuring the difference in optical path lengths between the rays diffracted 
from opposite sides of the grating provides the maximum phase retardation; 
dividing this quantity by the wavelength λ of the diffracted light gives the 
resolving power R. 

 The degree to which the theoretical resolving power is attained depends not 
only on the angles α and β, but also on the optical quality of the grating surface, 
the uniformity of the groove spacing, the quality of the associated optics in the 
system, and the width of the slits (or detector elements).  Any departure of the 
diffracted wavefront greater than λ/10 from a plane (for a plane grating) or from 
a sphere (for a spherical grating) will result in a loss of resolving power due to 
aberrations at the image plane.  The grating groove spacing must be kept 

                                                           
7 N. Abramson, “Principle of least wave change,” J. Opt. Soc. Am. A6, 627-629 (1989). 
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constant to within about one percent of the wavelength at which theoretical 
performance is desired.  Experimental details, such as slit width, air currents, 
and vibrations can seriously interfere with obtaining optimal results. 
 The practical resolving power is limited by the spectral width of the spectral 
lines emitted by the source.  For this reason, systems with revolving powers 
greater than R = 500,000 are not usually required except for the study of spectral 
line shapes, Zeeman effects, and line shifts, and are not needed for separating 
individual spectral lines. 
 A convenient test of resolving power is to examine the isotopic structure of 
the mercury emission line at λ = 546.1 nm (see Section 11.4).  Another test for 
resolving power is to examine the line profile generated in a spectrograph or 
scanning spectrometer when a single mode laser is used as the light source.  The 
full width at half maximum intensity (FWHM) can be used as the criterion for 
Δλ.  Unfortunately, resolving power measurements are the convoluted result of 
all optical elements in the system, including the locations and dimensions of the 
entrance and exit slits and the auxiliary lenses and mirrors, as well as the quality 
of these elements.  Their effects on resolving power measurements are neces-
sarily superimposed on those of the grating. 

2.4.2. Spectral resolution    

 While resolving power can be considered a characteristic of the grating and 
the angles at which it is used, the ability to resolve two wavelengths λ1 and 
λ2 = λ1 + Δλ generally depends not only on the grating but on the dimensions 
and locations of the entrance and exit slits (or detector elements), the aberrations 
in the images, and the magnification of the images.  The minimum wavelength 
difference Δλ (also called the limit of resolution, or simply resolution) between 
two wavelengths that can be resolved unambiguously can be determined by 
convoluting the image of the entrance aperture (at the image plane) with the exit 
aperture (or detector element).  This measure of the ability of a grating system to 
resolve nearby wavelengths is arguably more relevant than is resolving power, 
since it takes into account the image effects of the system.  While resolving 
power is a dimensionless quantity, resolution has spectral units (usually 
nanometers). 
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2.4.3. Bandpass   

 The (spectral) bandpass B of a spectroscopic system is the wavelength 
interval of the light that passes through the exit slit (or falls onto a detector 
element).  It is often defined as the difference in wavelengths between the points 
of half-maximum intensity on either side of an intensity maximum.   

 For an optical system in which the width of the image of the entrance slit is 
roughly equal to the width of the exit slit, an estimate for bandpass is the 
product of the exit slit width w' and the reciprocal linear dispersion P: 

  B ≈ w' P. (2-23) 

An instrument with smaller bandpass can resolve wavelengths that are closer 
together than an instrument with a larger bandpass.  Bandpass can be reduced by 
decreasing the width of the exit slit (to a certain limit; see Chapter 8), but 
usually at the expense of decreasing light intensity as well. 

 See Section 8.3 for additional comments on instrumental bandpass. 

2.4.4. Resolving power vs. resolution   

 In the literature, the terms resolving power and resolution are sometimes in-
terchanged.  While the word power has a very specific meaning (energy per unit 
time), the phrase resolving power does not involve power in this way; as 
suggested by Hutley, though, we may think of resolving power as “ability to re-
solve”.8 
 The comments above regarding resolving power and resolution pertain to 
planar classical gratings used in collimated light (plane waves).  The situation is 
complicated for gratings on concave substrates or with groove patterns 
consisting of unequally spaced lines, which restrict the usefulness of the 
previously defined simple formulas, though they may still yield useful 
approximations.  Even in these cases, though, the concept of maximum 
retardation is still a useful measure of the resolving power, and the convolution 
of the image and the exit slit is still a useful measure of resolution. 

                                                           
8 M. C. Hutley, Diffraction Gratings, Academic Press (New York, New York: 1982), p. 29.   



 

 34

2.5. FOCAL LENGTH AND ƒ/NUMBER  

 For gratings (or grating systems) that image as well as diffract light, or 
disperse light that is not collimated, a focal length may be defined.  If the beam 
diffracted from a grating of a given wavelength λ and order m converges to a 
focus, then the distance between this focus and the grating center is the focal 
length r'(λ).  [If the diffracted light is collimated, and then focused by a mirror 
or lens, the focal length is that of the refocusing mirror or lens and not the 
distance to the grating.]  If the diffracted light is diverging, the focal length may 
still be defined, although by convention we take it to be negative (indicating that 
there is a virtual image behind the grating).  Similarly, the incident light may di-
verge toward the grating (so we define the incidence or entrance slit distance 
r(λ) > 0) or it may converge toward a focus behind the grating (for which r(λ) < 
0).  Usually gratings are used in configurations for which r does not depend on 
wavelength (though in such cases r' usually depends on λ).  
 In Figure 2-7, a typical concave grating configuration is shown; the 
monochromatic incident light (of wavelength λ) diverges from a point source at 
A and is diffracted toward B.  Points A and B are distances r and r', 
respectively, from the grating center O.  In this figure, both r and r' are positive. 
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Figure 2-7.   Geometry for focal distances and focal ratios (ƒ/numbers).  GN is the 
grating normal (perpendicular to the grating at its center, O), W is the width of the 
grating (its dimension perpendicular to the groove direction, which is out of the page), 
and A and B are the source and image points, respectively. 
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 Calling the width (or diameter) of the grating (in the dispersion plane) W 
allows the input and output ƒ/numbers (also called focal ratios) to be defined: 

  ƒ/noINPUT = 
W
r ,    ƒ/noOUTPUT = ( )

W
r λ′

. (2-25) 

Usually the input ƒ/number is matched to the ƒ/number of the light cone leaving 
the entrance optics (e.g., an entrance slit or fiber) in order to use as much of the 
grating surface for diffraction as possible.  This increases the amount of 
diffracted energy while not overfilling the grating (which would generally con-
tribute to instrumental stray light; see Chapter 10). 

 For oblique (non-normal) incidence or diffraction, Eqs. (2-25) are often 
modified by replacing W with the projected width of the grating: 

  ƒ/noINPUT = 
αcosW

r  ,        ƒ/noOUTPUT = ( )
β

λ
cosW

r ′
 . (2-23) 

These equations account for the reduced width of the grating as seen by the 
entrance and exit slits; moving toward oblique angles (i.e., increasing |α| or |β|) 
decreases the projected width and therefore increases the ƒ/number. 

 The focal length is an important parameter in the design and specification 
of grating spectrometers, since it governs the overall size of the optical system 
(unless folding mirrors are used).  The ratio between the input and output focal 
lengths determines the projected width of the entrance slit that must be matched 
to the exit slit width or detector element size.  The ƒ/number is also important, 
as it is generally true that spectral aberrations decrease as ƒ/number increases.  
Unfortunately, increasing the input ƒ/number results in the grating subtending a 
smaller solid angle as seen from the entrance slit; this will reduce the amount of 
light energy the grating collects and consequently reduce the intensity of the 
diffracted beams.  This trade-off prohibits the formulation of a simple rule for 
choosing the input and output ƒ/numbers, so sophisticated design procedures 
have been developed to minimize aberrations while maximizing collected 
energy.  See Chapter 7 for a discussion of the imaging properties and Chapter 8 
for a description of the efficiency characteristics of grating systems. 
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2.6. ANAMORPHIC MAGNIFICATION  

 For a given wavelength λ, we may consider the ratio of the width of a 
collimated diffracted beam to that of a collimated incident beam to be a measure 
of the effective magnification of the grating (see Figure 2-8).  From this figure 
we see that this ratio is 

  
α
β

cos
cos

=
a
b . (2-26) 

Since α and β depend on λ through the grating equation (2-1), this 
magnification will vary with wavelength.  The ratio b/a is called the anamorphic 
magnification; for a given wavelength λ, it depends only on the angular 
configuration in which the grating is used. 
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Figure 2-8.   Anamorphic magnification.  The ratio b/a of the beam widths equals the 
anamorphic magnification; the grating equation (2-1) guarantees that this ratio will not 
equal unity unless m = 0 (specular reflection) or α = β (the Littrow configuration). 

 

 The magnification of an object not located at infinity (so that the incident 
rays are not collimated) is discussed in Chapter 8. 
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2.7. FREE SPECTRAL RANGE  

 For a given set of incidence and diffraction angles, the grating equation is 
satisfied for a different wavelength for each integral diffraction order m.  Thus 
light of several wavelengths (each in a different order) will be diffracted along 
the same direction: light of wavelength λ in order m is diffracted along the same 
direction as light of wavelength λ/2 in order 2m, etc. 
 The range of wavelengths in a given spectral order for which superposition 
of light from adjacent orders does not occur is called the free spectral range 

λF .  It can be calculated directly from its definition: in order m, the wavelength 
of light that diffracts along the direction of λ in order m+1 is λ + Δλ, where 

  λ + Δλ = 
m

m 1+  λ, (2-27) 

from which 

  λF  = Δλ = 
m
λ . (2-28) 

The concept of free spectral range applies to all gratings capable of operation in 
more than one diffraction order, but it is particularly important in the case of 
echelles, because they operate in high orders with correspondingly short free 
spectral ranges. 

 Free spectral range and order sorting are intimately related, since grating 
systems with greater free spectral ranges may have less need for filters (or cross-
dispersers) that absorb or diffract light from overlapping spectral orders.  This is 
one reason why first-order applications are widely popular. 

2.8. ENERGY DISTRIBUTION (GRATING EFFICIENCY) 

 The distribution of power of a given wavelength diffracted by a grating into 
the various spectral order depends on many parameters, including the power and 
polarization of the incident light, the angles of incidence and diffraction, the 
(complex) index of refraction of the materials at the surface of the grating, and 
the groove spacing.  A complete treatment of grating efficiency requires the 
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vector formulation of electromagnetic theory (i.e., Maxwell's equations) applied 
to corrugated surfaces, which has been studied in detail over the past few 
decades.  While the theory does not yield conclusions easily, certain rules of 
thumb can be useful in making approximate predictions.   

 The simplest and most widely used rule of thumb regarding grating 
efficiency (for reflection gratings) is the blaze condition 

  mλ = 2dsinθΒ, (2-29) 

where θΒ (often called the blaze angle of the grating) is the angle between the 
face of the groove and the plane of the grating (see Figure 2-9).   When the 
blaze condition is satisfied, the incident and diffracted rays follow the law of 
reflection when viewed from the facet; that is, we have 

  α − θΒ  = β − θΒ. (2-30) 

Because of this relationship, it is often said that when a grating is used at the 
blaze condition, the facets act as tiny mirrors – this is not strictly true (since the 
facet “mirror” is roughly of the same dimensions as the wavelength itself, ray 
optics does not provide an adequate physical model), but it is a useful way to 
remember the conditions under which a grating can be used to enhance 
efficiency. 

 Eq. (2-29) generally leads to the highest efficiency when the following 
condition is also satisfied: 

  2K = α – β = 0, (2-31) 

where 2K was defined above as the angle between the incident and diffracted 
beams (see Eq. (2-6)).  Eqs. (2-29) and (2-31) collectively define the Littrow 
blaze condition.  When Eq. (2-31) is not satisfied (i.e., α ≠ β and therefore the 
grating is not used in the Littrow configuration), efficiency is generally seen to 
decrease as one moves further off Littrow (i.e., as ⏐2K⏐ increases). 
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Figure 2-9.  Blaze condition.  The angles of incidence α and diffraction β are shown in 
relation to the facet angle θΒ for the blaze condition.  GN is the grating normal and FN is 
the facet normal.  When the facet normal bisects the angle between the incident and 
diffracted rays, the blaze condition (Eq. (2-29)) is satisfied. 

 

 For a given blaze angle θΒ, the Littrow blaze condition provides the blaze 
wavelength λΒ, the wavelength for which the efficiency is maximal when the 
grating is used in the Littrow configuration: 

  λΒ  = 
m
d2 sinθΒ,    in Littrow. (2-32) 

Many grating catalogs specify the first-order Littrow blaze wavelength for each 
grating: 

  λΒ  = 2d sinθΒ,    in Littrow (m = 1). (2-33) 

Unless a diffraction order is specified, quoted values of λΒ are generally 
assumed to be for the first diffraction order, in Littrow. 
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 Recently, computer codes have become commercially available that 
accurately predict grating efficiency for a wide variety of groove profiles over 
wide spectral ranges. 

 The topic of grating efficiency is addressed more fully in Chapter 9. 

2.9. SCATTERED AND STRAY LIGHT 

 All light that reaches the detector of a grating-based instrument from 
anywhere other than the grating, by any means other than diffraction as 
governed by Eq. (2-1), for any order other than the primary diffraction order of 
use, is called instrumental stray light (or more commonly, simply stray light).  
All components in an optical system contribute stray light, as will any baffles, 
apertures, and partially reflecting surfaces.  Unwanted light originating from an 
illuminated grating itself is often called scattered light or grating scatter. 

 Instrumental stray light can introduce inaccuracies in the output of an 
absorption spectrometer used for chemical analysis.  These instruments usually 
employ a “white light” (broad spectrum) light source and a monochromator to 
isolate a narrow spectral range from the white light spectrum; however, some of 
the light at other wavelengths will generally reach the detector, which will tend 
to make an absorbance reading too low (i.e., the sample will seem to be slightly 
more transmissive than it would in the absence of stray light).  In most 
commercial benchtop spectrometers, such errors are on the order of 0.1 to 1 
percent (and can be much lower with proper instrument design) but in certain 
circumstances (e.g., in Raman spectroscopy), instrumental stray light can lead to 
significant errors.  Grating scatter and instrumental stray light are addressed in 
more detail in Chapter 10. 

2.10. SIGNAL-TO-NOISE RATIO (SNR) 

 The signal-to-noise ratio (SNR) is the ratio of diffracted energy to 
unwanted light energy.  While we might be tempted to think that increasing 
diffraction efficiency will increase SNR, stray light usually plays the limiting 
role in the achievable SNR for a grating system. 

 Replicated gratings from ruled master gratings generally have quite high 
SNRs, though holographic gratings sometimes have even higher SNRs, since 
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they have no ghosts due to periodic errors in groove location and lower 
interorder stray light. 

 As SNR is a property of the optical instrument, not of the grating only, 
there exist no clear rules of thumb regarding what type of grating will provide 
higher SNR.   
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33..  RULED GRATINGS     
 

 

3.0. INTRODUCTION 

 The first diffraction gratings made for commercial use were mechanically 
ruled, manufactured by burnishing grooves individually with a diamond tool 
against a thin coating of evaporated metal applied to a plane or concave surface.  
Such ruled gratings comprise the majority of diffraction gratings used in 
spectroscopic instrumentation. 

3.1. RULING ENGINES 

 The most vital component in the production of ruled diffraction gratings is 
the apparatus, called a ruling engine, on which master gratings are ruled.  At 
present, Newport has three ruling engines in full-time operation, each producing 
a substantial number of high-quality master gratings every year.  Each of these 
engines produces gratings with very low Rowland ghosts, high resolving power, 
and high efficiency uniformity. 
 Selected diamonds, whose crystal axis is oriented for optimum behavior, 
are used to shape the grating grooves.  The ruling diamonds are carefully shaped 
by skilled diamond toolmakers to produce the exact groove profile required for 
each grating.  The carriage that carries the diamond back and forth during ruling 
must maintain its position to better than a few nanometers for ruling periods that 
may last for one day or as long as six weeks. 
 The mechanisms for advancing the grating carriages on all Newport engines 
are designed to make it possible to rule gratings with a wide choice of groove 
spacings.  Newport’s Diffraction Grating Catalog shows the range of groove 
spacings available. 
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3.1.1. The Michelson engine   

 In 1947 Bausch & Lomb acquired its first ruling engine from the University 
of Chicago; this engine was originally designed by Michelson in the 1910s and 
rebuilt by Gale.  It underwent further refinement, which greatly improved its 
performance, and has produced a continuous supply of high-quality gratings of 
up to 200 x 250 mm ruled area. 
 The Michelson engine originally used an interferometer system to plot the 
error curve of the lead screw, from which an appropriate mechanical correction 
cam was derived.  In 1990, this system was superseded by the addition of a 
digital computer servo control system based on a laser interferometer.  The 
Michelson engine is unusual in that it covers the widest range of groove 
spacings of any ruling engine: it can rule gratings as coarse as 20 grooves per 
millimeter (g/mm) and as fine as 10,800 g/mm. 

3.1.2. The Mann engine   

 The second ruling engine installed at Newport has been producing gratings 
since 1953, was originally built by the David W. Mann Co. of Lincoln, Mas-
sachusetts.  Bausch & Lomb equipped it with an interferometric control system 
following the technique of Harrison of MIT.9  The Mann engine can rule areas 
up to 110 x 110 mm, with virtually no detectable ghosts and nearly theoretical 
resolving power. 
 While the lead screws of the ruling engines are lapped to the highest 
precision attainable, there are always residual errors in both threads and 
bearings that must be compensated to produce the highest quality gratings.  The 
Mann engine is equipped with an automatic interferometer servo system that 
continually adjusts the grating carriage to the correct position as each groove is 
ruled.  In effect, the servo system simulates a perfect screw. 

                                                           
9 G. R. Harrison and J. E. Archer, “Interferometric calibration of precision screws and control of 
ruling engines,” J. Opt. Soc. Am. 41, 495 (1951);  G. R. Harrison and G. W. Stroke, “Interferometric 
control of grating ruling with continuous carriage advance,” J. Soc. Opt. Am. 45, 112 (1955);  G. R. 
Harrison, N. Sturgis, S. C. Baker and G. W. Stroke, “Ruling of large diffraction grating with 
interferometric control”, J. Opt. Soc. Am. 47, 15 (1957) . 
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3.1.3. The MIT 'B' engine   

 The third ruling engine at Newport was built by Harrison and moved to 
Rochester in 1968.  It has the capacity to rule plane gratings to the greatest 
precision ever achieved; these gratings may be up to 420 mm wide, with 
grooves (between 20 and 1500 per millimeter) up to 320 mm long.  It uses a 
double interferometer control system, based on a frequency-stabilized laser, to 
monitor not only table position but to correct residual yaw errors as well.  This 
engine produces gratings with nearly theoretical resolving powers, virtually 
eliminating Rowland ghosts and minimizing stray light.  It has also ruled almost 
perfect echelle gratings, the most demanding application of a ruling engine.  
 

 

 

Figure 3-1.  Newport MIT ‘B’ Engine.  This ruling engine, now in operation at Newport, 
is shown with its cover removed. 
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3.2. THE RULING PROCESS 

 Master gratings are ruled on carefully selected well-annealed substrates of 
several different materials.  The choice is generally between BK-7 optical glass, 
special grades of fused silica, or a special grade of ZeroDur®.  The optical sur-
faces of these substrates are polished to closer than λ/10 for green light (about 
50 nm), then coated with a reflective film (usually aluminum or gold). 
 Compensating for changes in temperature and atmospheric pressure is 
especially important in the environment around a ruling engine.  Room tem-
perature must be held constant to within 0.01 °C for small ruling engines (and to 
within 0.005 °C for larger engines).  Since the interferometric control of the 
ruling process uses monochromatic light, whose wavelength is sensitive to the 
changes of the refractive index of air with pressure fluctuations, atmospheric 
pressure must be compensated for by the system.  A change in pressure of 
2.5 mm of mercury results in a corresponding change in wavelength of one part 
per million.10  This change is negligible if the optical path of the interferometer 
is near zero, but becomes significant as the optical path increases during the 
ruling.  If this effect is not compensated, the carriage control system of the 
ruling engine will react to this change in wavelength, causing a variation in 
groove spacing.  
 The ruling engine must also be isolated from those vibrations that are easily 
transmitted to the diamond.  This may be done by suspending the engine mount 
from springs that isolate vibrations between frequencies from 2 or 3 Hz (which 
are of no concern) to about 60 Hz, above which vibration amplitudes are usually 
too small to have a noticeable effect.11 
 The actual ruling of a master grating is a long, slow and painstaking 
process.  The set-up of the engine, prior to the start of the ruling, requires great 
skill and patience.  This critical alignment is impossible without the use of a 
high-power interference microscope, or an electron microscope for more finely 
spaced grooves. 
 After each microscopic examination, the diamond is readjusted until the 
operator is satisfied that the groove shape is appropriate for the particular 

                                                           
10 H. W. Babcock, “Control of a ruling engine by a modulated interferometer,” Appl. Opt. 1, 415-
420 (1962). 
11 G. R. Harrison, “Production of diffraction gratings. I. Development of the ruling art,” J. Opt. Soc. 
Am. 39, 413-426 (1949). 
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grating being ruled.  This painstaking adjustment, although time consuming, 
results in very "bright" gratings with nearly all the diffracted light energy 
concentrated in a specific angular range of the spectrum.  This ability to con-
centrate the light selectively at a certain part of the spectrum is what distin-
guishes blazed diffraction gratings from all others. 
 Finished master gratings are carefully tested to be certain that they have met 
specifications completely.  The wide variety of tests run to evaluate all the 
important properties include spectral resolution, efficiency, Rowland ghost 
intensity, and surface accuracy.  Wavefront interferometry is used when 
appropriate.  If a grating meets all specifications, it is then used as a master for 
the production of our replica gratings. 

3.3. VARIED LINE-SPACE (VLS) GRATINGS 

 For over a century, great effort has been expended in keeping the spacing 
between successive grooves uniform as a master grating is ruled.  In an 1893 
paper, Cornu realized that variations in the groove spacing modified the cur-
vature of the diffracted wavefronts.12  While periodic and random variations 
were understood to produce stray light, a uniform variation in groove spacing 
across the grating surface was recognized by Cornu to change the location of the 
focus of the spectrum, which need not be considered a defect if properly taken 
into account.  He determined that a planar classical grating, which by itself 
would have no focusing properties if used in collimated incident light, would 
focus the diffracted light if ruled with a systematic 'error' in its groove spacing.  
He was able to verify this by ruling three gratings whose groove positions were 
specified to vary as each groove was ruled.  Such gratings, in which the pattern 
of straight parallel grooves has a variable yet well-defined (though not periodic) 
spacing between successive grooves, are now called varied line-space (VLS) 
gratings. 
 The Michelson engine, which has digital computer control, can readily rule 
VLS gratings.  Any groove spacing d(y) that varies reasonably as a function of 
position y along the grating surface (and no more than about ±100 nm from the 
nominal groove spacing) can be programmed into the computer.  The 

                                                           
12 M. A. Cornu, “Vérifications numériques relatives aux propriétés focales des réseaux diffringents 
plans,” Comptes Rendus Acad. Sci. 117, 1032-1039 (1893). 
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relationship between groove spacing (and curvature) and imaging is discussed in 
Chapter 7. 
 



 

 49

4. HOLOGRAPHIC GRATINGS   
 

 

4.0. INTRODUCTION 

 Since the late 1960s, a method distinct from mechanical ruling has also 
been used to manufacture diffraction gratings.  This method involves the 
photographic recording of a stationary interference fringe field.  Such 
interference gratings, more commonly (though inaccurately) known as holo-
graphic gratings, have several characteristics that distinguish them from ruled 
gratings. 
 In Aimé Cotton produced experimental holographic gratings,13 fifty years 
before the concepts of holography were developed by Gabor.  A few decades 
later, Michelson considered the interferometric generation of diffraction gratings 
obvious, but recognized that an intense monochromatic light source and a 
photosensitive material of sufficiently fine granularity did not then exist.14  In 
the mid 1960s, ion lasers and photoresists (grainless photosensitive materials) 
became available; the former provided a strong monochromatic line, and the 
latter was photoactive at the molecular level, rather than at the crystalline level 
(unlike, for example, photographic film).   
 In the late 1960s, researchers independently produced the first holographic 
diffraction gratings of spectroscopic quality. 15 

                                                           
13 A. Cotton, “Resaux obtenus par la photographie des ordes stationaires,” Seances Soc. Fran. Phys. 
70-73 (1901). 
14 A. A. Michelson, Studies in Optics (U. Chicago, 1927; reprinted by Dover Publications, 1995). 
15 D. Rudolph and G. Schmahl, “Verfahren zur Herstellung von Röntgenlinsen und 
Beugungsgittern,” Umschau Wiss. Tech. 78, 225 (1967);  G. Schmahl, “Holographically made 
diffraction gratings for the visible, UV and soft x-ray region,” J. Spectrosc. Soc. Japan 23, 3-11 
(1974);  A. Labeyrie and J. Flamand, “Spectroscopic performance of holographically made 
diffraction gratings,” Opt. Commun. 1, 5 (1969). 
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4.1. PRINCIPLE OF MANUFACTURE 

4.1.1. Formation of an interference pattern   

 When two sets of coherent equally polarized monochromatic optical plane 
waves of equal intensity intersect each other, a standing wave pattern will be 
formed in the region of intersection if both sets of waves are of the same 
wavelength λ (see Figure 4-1).16  The combined intensity distribution forms a 
set of straight equally-spaced fringes (bright and dark lines).  Thus a 
photographic plate would record a fringe pattern, since the regions of zero field 
intensity would leave the film unexposed while the regions of maximum 
intensity would leave the film maximally exposed.  Regions between these ex-
tremes, for which the combined intensity is neither maximal nor zero, would 
leave the film partially exposed.  The combined intensity varies sinusoidally 
with position as the interference pattern is scanned along a line.  If the beams 
are not of equal intensity, the minimum intensity will no longer be zero, thereby 
decreasing the contrast between the fringes.  As a consequence, all portions of 
the photographic plate will be exposed to some degree. 
 The centers of adjacent fringes (that is, adjacent lines of maximum 
intensity) are separated by a distance d, where 

   d =
θ

λ
sin2

 (4-1) 

and θ is the half the angle between the beams.  A small angle between the beams 
will produce a widely spaced fringe pattern (large d), whereas a larger angle will 
produce a fine fringe pattern.  The lower limit for d is λ/2, so for visible 
recording light, thousands of fringes per millimeter may be formed. 

                                                           
16 Most descriptions of holographic grating recording stipulate coherent beams, but such gratings 
may also be made using incoherent light; see M. C. Hutley, “Improvements in or relating to the 
formation of photographic records,” UK Patent no. 1384281 (1975). 
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4.1.2. Formation of the grooves   

 Master holographic diffraction gratings are recorded in photoresist, a mate-
rial whose intermolecular bonds are either strengthened or weakened by ex-
posure to light.   Commercially available photoresists are more sensitive to some 
wavelengths than others; the recording laser line must be matched to the type of 
photoresist used.   The proper combination of an intense laser line and a pho-
toresist that is highly sensitive to this wavelength will reduce exposure time. 
 Photoresist gratings are chemically developed after exposure to reveal the 
fringe pattern.  A photoresist may be positive or negative, though the latter is 
rarely used.  During chemical development, the portions of a substrate covered 
in positive photoresist that have been exposed to light are dissolved, while for 
negative photoresist the unexposed portions are dissolved.  Upon immersion in 
the chemical developer, a surface relief pattern is formed: for positive pho-
toresist, valleys are formed where the bright fringes were, and ridges where the 
dark fringes were.  At this stage a master holographic grating has been 
produced;  
 

 

 

substrate 

2 θ 

 
  

Figure 4-1.  Formation of interference fringes.  Two collimated beams of wavelength λ 
form an interference pattern composed of straight equally spaced planes of intensity 
maxima (shown as the horizontal lines).  A sinusoidally varying interference pattern is 
found at the surface of a substrate placed perpendicular to these planes. 
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its grooves are sinusoidal ridges.  This grating may be coated and replicated like 
master ruled gratings.   
 Lindau has developed simple theoretical models for the groove profile 
generated by making master gratings holographically, and shown that even the 
application of a thin metallic coating to the holographically-produced groove 
profile can alter that profile.17 

4.2. CLASSIFICATION OF HOLOGRAPHIC GRATINGS  

4.2.1. Single-beam interference    

 An interference pattern can be generated from a single collimated 
monochromatic coherent light beam if it is made to reflect back upon itself.  A 
standing wave pattern will be formed, with intensity maxima forming planes 
parallel to the wavefronts.  The intersection of this interference pattern with a 
photoresist-covered substrate will yield on its surface a pattern of grooves, 
whose spacing d depends on the angle θ between the substrate surface and the 
planes of maximum intensity (see Figure 4-2)18; the relation between d and θ is 
identical to Eq. (4-1), though it must be emphasized that the recording geometry 
behind the single-beam holographic grating (or Sheridon grating) is different 
from that of the double-beam geometry for which Eq. (4-1) was derived. 
 The groove depth h for a Sheridon grating is dictated by the separation 
between successive planes of maximum intensity (nodal planes); explicitly, 

  h = 
n2
0λ

,  (4-2) 

where λ0 is the wavelength of the recording light and n the refractive index of 
the photoresist.  This severely limits the range of available blaze wavelengths, 
typically to those between 200 and 250 nm. 
 

                                                           
17 S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371-1381 
(1982). 
18 N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316-318 (1968). 
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mirror substrate

θ

 
  

Figure 4-2.  Sheridon recording method.  A collimated beam of light, incident from the 
right, is retroreflected by a plane mirror, which forms a standing wave pattern whose 
intensity maxima are shown.  A transparent substrate, inclined at an angle θ to the 
fringes, will have its surfaces exposed to a sinusoidally varying intensity pattern. 

4.2.2. Double-beam interference   

 The double-beam interference pattern shown in Figure 4-1 is a series of 
straight parallel fringe planes, whose intensity maxima (or minima) are equally 
spaced throughout the region of interference.  Placing a substrate covered in 
photoresist in this region will form a groove pattern defined by the intersection 
of the surface of the substrate with the fringe planes.  If the substrate is planar, 
the grooves will be straight, parallel and equally spaced, though their spacing 
will depend on the angle between the substrate surface and the fringe planes.  If 
the substrate is concave, the grooves will be curved and unequally spaced, 
forming a series of circles of different radii and spacings.  Regardless of the 
shape of the substrate, the intensity maxima are equally spaced planes, so the 
grating recorded will be a classical equivalent holographic grating (more often 
called simply a classical grating).  This name recognizes that the groove pattern 
(on a planar surface) is identical to that of a planar classical ruled grating.  Thus 
all holographic gratings formed by the intersection of two sets of plane waves 
are called classical equivalents, even if their substrates are not planar (and 
therefore groove patterns are not straight equally spaced parallel lines).  
 If two sets of spherical wavefronts are used instead, as in Figure 4-3, a first 
generation holographic grating is recorded.  The surfaces of maximum intensity 
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are now confocal hyperboloids (if both sets of wavefronts are converging, or if 
both are diverging) or ellipsoids (if one set is converging and the other 
diverging).  This interference pattern can be obtained by focusing the recording 
laser light through pinholes (to simulate point sources).  Even on a planar sub-
strate, the fringe pattern will be a collection of unequally spaced curves.  Such a 
groove pattern will alter the curvature of the diffracted wavefronts, regardless of 
the substrate shape, thereby providing focusing.  Modification of the curvature 
and spacing of the grooves can be used to reduce aberrations in the spectral 
images; as there are three degrees of freedom in such a recording geometry, 
three aberrations can be reduced (see Chapter 6). 
 

 

Α

Β

substrate 

 
  

 

Figure 4-3.  First-generation recording method.  Laser light focused through pinholes at 
A and B forms two sets of spherical wavefronts, which diverge toward the grating 
substrate.  The standing wave region is shaded; the intensity maxima are confocal 
hyperboloids. 

 

 The addition of auxiliary concave mirrors or lenses into the recording 
beams can render the recording wavefronts toroidal (that is, their curvature in 
two perpendicular directions will generally differ).  The grating thus recorded is 
a second generation holographic grating.19  The additional degrees of freedom 

                                                           
19 C. Palmer, “Theory of second-generation holographic gratings,” J. Opt. Soc. Am. A6, 1175-1188 
(1989);  T. Namioka and M. Koike, “Aspheric wavefront recording optics for holographic gratings,” 
Appl. Opt. 34, 2180-2186 (1995). 
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in the recording geometry (e.g., the location, orientation and radii of the 
auxiliary mirrors) provide for the reduction of additional aberrations above the 
three provided by first generation holographic gratings.20 
 The use of aspheric recording wavefronts can be further accomplished by 
using aberration-reduced gratings in the recording system; the first set of 
gratings is designed and recorded to produce the appropriate recording 
wavefronts to make the second grating.21  Another technique is to illuminate the 
substrate with light from one real source, and reflect the light that passes 
through the substrate by a mirror behind it, so that it interferes with itself to 
create a stationary fringe pattern.22  Depending on the angles involved, the 
curvature of the mirror and the curvature of the front and back faces of the 
substrate, a number of additional degrees of freedom may be used to reduce 
high-order aberrations.  [Even more degrees of freedom are available if a lens is 
placed in the recording system thus described.23]  

4.3. THE RECORDING PROCESS 

 Holographic gratings are recorded by placing a light-sensitive surface in an 
interferometer.  The generation of a holographic grating of spectroscopic quality 
requires a stable optical bench and laser as well as high-quality optical compo-
nents (mirrors, collimating optics, etc.).  Ambient light must be eliminated so 
that fringe contrast is maximal.  Thermal gradients and air currents, which 
change the local index of refraction in the beams of the interferometer, must be 
avoided.  Newport records master holographic gratings in a clean room 
specially-designed to meet these requirements. 
 During the recording process, the components of the optical system must be 
of nearly diffraction-limited quality, and mirrors, pinholes and spatial filters 

                                                           
20 M. Duban, “Holographic aspheric gratings printed with aberrant waves,” Appl. Opt. 26, 4263-
4273 (1987). 
21 E. A. Sokolova, “Concave diffraction gratings recorded in counterpropagating beams,” J. Opt. 
Technol. 66, 1084-1088 (1999);  E. A. Sokolova, “New-generation diffraction gratings,” J. Opt. 
Technol. 68, 584-589 (2001). 
22 E. A. Sokolova, “Geometric theory of two steps recorded holographic diffraction gratings,” Proc. 
SPIE 3540, 113-324 (1998);  E. Sokolova, B. Kruizinga, T. Valkenburg and J. Schaarsberg, 
“Recording of concave diffraction gratings in counterpropagating beams using meniscus blanks,” J. 
Mod. Opt. 49, 1907-1917 (2002). 
23 E. Sokolova, B. Kruizinga and I. Golubenko, “Recording of concave diffraction gratings in a two-
step process using spatially incoherent light,” Opt. Eng. 43, 2613-2622 (2004). 



 

 56

must be adjusted as carefully as possible.  Any object in the optical system re-
ceiving laser illumination may scatter this light toward the grating, which will 
contribute to stray light.  Proper masking and baffling during recording are 
essential to the successful generation of a holographic grating, as is single-mode 
operation of the laser throughout the duration of the exposure. 
 The substrate on which the master holographic grating is to be produced 
must be coated with a highly uniform, virtually defect-free coating of 
photoresist.  Compared with photographic film, photoresists are somewhat in-
sensitive to light during exposure, due to the molecular nature of their 
interaction with light.  As a result, typical exposures may take from minutes to 
hours, during which time an extremely stable fringe pattern (and, therefore, 
optical system) is required.  After exposure, the substrate is immersed in a de-
veloping agent, which forms a surface relief fringe pattern; coating the substrate 
with metal then produces a master holographic diffraction grating. 

4.4. DIFFERENCES BETWEEN RULED AND HOLOGRAPHIC 
GRATINGS 

 Due to the distinctions between the fabrication processes for ruled and 
holographic gratings, each type of grating has advantages and disadvantages 
relative to the other, some of which are described below. 

4.4.1. Differences in grating efficiency    

 The efficiency curves of ruled and holographic gratings generally differ 
considerably, though this is a direct result of the differences in groove profiles 
and not strictly due to method of making the master grating. For example, 
holographic gratings made using the Sheridon method described in Section 4.2.1 
above have nearly triangular groove profiles, and therefore have efficiency 
curves that look more like those of ruled gratings than those of sinusoidal-
groove holographic gratings. 
 There exist no clear rules of thumb for describing the differences in 
efficiency curves between ruled and holographic gratings; the best way to gain 
insight into these differences is to look at representative curves of each grating 
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type.  Chapter 9 in this Handbook contains a number of curves; the paper24 on 
which this chapter is based contains even more curves, and the book Diffraction 
Gratings and Applications25 by Loewen and Popov has an extensive collection 
of efficiency curves and commentary regarding the efficiency behavior of plane 
reflection gratings, transmission gratings, echelle gratings and concave gratings. 

4.4.2. Differences in scattered light    

 Since holographic gratings do not involve burnishing grooves into a thin 
layer of metal, the surface irregularities on its grooves differ from those of 
mechanically ruled gratings.  Moreover, errors of ruling, which are a mani-
festation of the fact that ruled gratings have one groove formed after another, 
are nonexistent in interferometric gratings, for which all grooves are formed 
simultaneously.  Holographic gratings, if properly made, can be entirely free of 
both small periodic and random groove placement errors found on even the best 
mechanically ruled gratings.  Holographic gratings may offer advantages to 
spectroscopic systems in which light scattered from the grating surface is per-
formance-limiting, such as in the study of the Raman spectra of solid samples, 
though proper instrumental design is essential to ensure that the performance of 
the optical system is not limited by other sources of stray light. 

4.4.3. Differences and limitations in the groove profile     

 The groove profile has a significant effect on the light intensity diffracted 
from the grating (see Chapter 9).  While ruled gratings may have triangular or 
trapezoidal groove profiles, holographic gratings usually have sinusoidal (or 
nearly sinusoidal) groove profiles (see Figure 4-4).  A ruled grating and a 
holographic grating, identical in every way except in groove profile, will have 
demonstrably different efficiencies (diffraction intensities) for a given 
wavelength and spectral order.  Moreover, ruled gratings are more easily blazed 
(by choosing the proper shape of the burnishing diamond) than are holographic 
gratings, which are usually blazed by ion bombardment (ion etching).  

                                                           
24 E. G. Loewen, M. Nevière and D. Maystre, "Grating efficiency theory as it applies to blazed and 
holographic gratings," Appl. Opt. 16, 2711-2721 (1977). 
25 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997). 
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Differences in the intensity diffracted into the order in which the grating is to be 
used implies differences in the intensities in all other orders as well; excessive 
energy in other orders usually makes the suppression of stray light more dif-
ficult. 
 

 

(a) 

(b) 
 

. 

Figure 4-4.  Ideal groove profiles for ruled and holographic gratings.  (a) Triangular 
grooves, representing the profile of a mechanically ruled grating. (b) Sinusoidal grooves, 
representing the profile of a holographic grating. 

 

 The distribution of groove profile characteristics across the surface of a 
grating may also differ between ruled and holographic gratings.  For a ruled 
concave grating, the facet angles are not aligned identically and the effective 
blaze wavelength varies from one side of the grating to the other.  A 
holographic grating, on the other hand, usually demonstrates much less variation 
in efficiency characteristics across its surface.  Gratings have been ruled by 
changing the facet angle at different places on the substrate during ruling.  
These so-called "multipartite" gratings, in which the ruling is interrupted and the 
diamond reoriented at different places across the width of the grating, 
demonstrate enhanced efficiency but do not provide the resolving power 
expected from an uninterrupted ruling (since each section of grooves may be out 
of phase with the others).26 

                                                           
26 M. C. Hutley and W. R. Hunter, "Variation of blaze of concave diffraction gratings," Appl. Opt. 
20, 245-250 (1981). 
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4.4.4. Limitations in obtainable groove frequencies    

 Limits on the number of grooves per millimeter differ between ruled and 
holographic gratings: ruled gratings offer a much wider range of groove 
spacings.  Below a few hundred grooves per millimeter, the recording optical 
system necessary to generate holographic gratings becomes cumbersome, while 
ruled gratings can have as few as thirty grooves per millimeter.  As an upper 
limit, holographic gratings can be recorded with several thousand grooves per 
millimeter, producing a groove density almost as high as those ruled gratings 
with over 10,000 grooves per millimeter. 

4.4.5. Differences in the groove patterns    

 Classical ruled plane gratings, which constitute the vast majority of ruled 
gratings, have straight equally-spaced grooves.  Classical ruled concave gratings 
have unequally spaced grooves that form circular arcs on the grating surface, 
but this groove pattern, when projected onto the plane tangent to the grating at 
its center, is still a set of straight equally spaced lines.  [It is the projected 
groove pattern that governs imaging.27]  Even ruled varied line-space (VLS) 
gratings (see Chapter 3) do not contain curved grooves, except on curved 
substrates.  The aberration reduction possible with ruled gratings is therefore 
limited to that possible with straight grooves, though this limitation is due to the 
mechanical motions possible with present-day ruling engines rather than with 
the burnishing process itself. 
 Holographic gratings, on the other hand, need not have straight grooves.  
Groove curvature can be modified to reduce aberrations in the spectrum, thereby 
improving the throughput and spectral resolution of imaging spectrometers.  A 
common spectrometer mount is the flat-field spectrograph, in which the 
spectrum is imaged onto a flat detector array and several wavelengths are 
monitored simultaneously.  Holographic gratings can significantly improve the 
imaging of such a grating system, whereas classical ruled gratings are not 
suitable for forming well-focused planar spectra without auxiliary optics. 

                                                           
27 C. Palmer and W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating 
systems," Opt. Eng. 33, 820-829 (1994). 
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4.4.6. Differences in the substrate shapes     

 The interference pattern used to record holographic gratings is not 
dependent on the substrate shape or dimension, so gratings can be recorded 
interferometrically on substrates of low ƒ/number more easily than they can be 
mechanically ruled on these substrates.  Consequently, holographic concave 
gratings lend themselves more naturally to systems with short focal lengths. 
Holographic gratings of unusual curvature can be recorded easily; of course, 
there may still remain technical problems associated with the replication of such 
gratings. 
 The substrate shape affects both the grating efficiency characteristics its 
imaging performance.   

• Grating efficiency depends on the groove profile as well as the angle at 
which the light is incident and diffracted; for a concave grating, both 
the groove profile and the local angles vary with position on the grating 
surface.  This leads to the efficiency curve being the sum of the various 
efficiency curves for small regions of the grating, each with its own 
groove profile and incidence and diffraction angles.   

• Grating imaging depends on the directions of the diffracted rays over 
the surface of the grating, which in turn are governed by the local 
groove spacing and curvature (i.e., the groove pattern) as well as the 
local incidence angle.  For a conventional plane grating used in 
collimated light, the groove pattern is the same everywhere on the 
grating surface, as is the incidence angle, so all diffracted ray are 
parallel.  For a grating on a concave substrate, though, the groove 
pattern is generally position-dependent, as is the local incidence angle, 
so the diffracted rays are not parallel – thus the grating has focal 
(imaging) properties as well as dispersive properties. 

4.4.7. Differences in the size of the master substrate 

 While ruled master gratings can generally be as large as 320 x 420 mm, 
holographic master gratings are rarely this large, due to the requirement that the 
recording apparatus contain very large, high-quality lenses or mirrors, and well 
as due to the decrease in optical power farther from the center of the master 
grating substrate.   
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4.4.8. Differences in generation time for master gratings    

 A ruled master grating is formed by burnishing each groove individually; to 
do so, the ruling diamond may travel a very large distance to rule one grating.  
For example, a square grating of dimensions 100 x 100 mm with 1000 grooves 
per millimeter will require the diamond to move 10 km (over six miles), which 
may take several weeks to rule.   
 In the fabrication of a master holographic grating, on the other hand, the 
grooves are created simultaneously.  Exposure times vary from a few minutes to 
tens of minutes, depending on the intensity of the laser light used and the 
spectral response (sensitivity) of the photoresist at this wavelength.  Even 
counting preparation and development time, holographic master gratings are 
produced much more quickly than ruled master gratings.  Of course, an 
extremely stable and clean optical recording environment is necessary to record 
precision holographic gratings.  For plane gratings, high-grade collimating 
optics are required, which can be a limitation for larger gratings.  
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55..  REPLICATED GRATINGS    
 

 

5.0. INTRODUCTION 

 Decades of research and development at Newport have contributed to the 
process for manufacturing replicated diffraction gratings (replicas) of 
spectroscopic quality.  This process is capable of producing thousands of 
duplicates of master gratings which equal the quality and performance of the 
master gratings themselves.  The replication process has reduced the price of a 
typical diffraction grating by a factor of one hundred or more, compared with 
the cost of acquiring a master grating, as well as greatly increasing their 
commercial availability. 

5.1. THE REPLICATION PROCESS 

 The process for making replica gratings results in a grating whose grooves 
are formed in a very thin layer of resin that adheres strongly to the surface of the 
substrate material.  The optical surface of a reflection replica is usually coated 
with aluminum (Al), but gold (Au) or silver (Ag) is recommended for greater 
diffracted energy in certain spectral regions.  Transmission gratings have no 
reflective coating. 
 Most commercially-available surface-relief gratings are made using a 
casting process, which faithfully reproduces the three-dimension nature of the 
grating surface.  [It is for this reason that photographic replication techniques 
are not generally sufficient.28] 
 The casting process for the production of a replicated diffraction grating is 
a series of sequential steps:   
 

                                                           
28 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997), 
p. 577. 
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• Submaster selection.  The replication process starts with the selection 
of a suitable submaster grating that has the desired specifications 
(groove frequency, blaze angle, size, etc.).  [A submaster grating is a 
grating replicated from a master, or from another submaster, but is 
itself used not as a final optical product but as a mold for the 
replication of product gratings; for this reason, it is not strictly required 
that a submaster grating meet all of the performance specifications of 
the product grating (e.g., it need not have a suitably reflective 
coating).] 

 

• Application of parting agent.  A parting agent is applied to the surface 
of the submaster grating.  The parting agent serves no optical purpose 
and should have no deleterious optical effects but aids in the separation 
of the delicate submaster and product grating surfaces.  Since the 
replicated optical surface is intended to match that of the submaster as 
closely as possible, the parting agent must be very thin and conformal 
to the surface of the submaster.29 

 

• Application of transfer coating.  After the parting agent is applied, a 
reflective coating (usually aluminum) is applied to the surface of the 
submaster.  This coating will form the optical surface of the product 
grating upon separation.  To obtain an optical quality coating, this step 
is performed in a vacuum deposition chamber.  [Since this coating is 
applied to the submaster, but transfers to the product grating upon 
separation, it is called a transfer coating.]  Typical transfer coating 
thicknesses are about one micron. 

 

• Cementing. A substrate is then cemented with a layer of resin to the 
grooved surface of the master grating; this layer can vary in thickness, 
but it is usually tens of microns thick.   It is the resin that holds the 
groove profile and replicates it from the submaster to the product; the 
transfer coating is much too thin for this purpose.  The “sandwich” 
formed by the substrate and submaster cemented together is shown in 
Figure 5-1. 

                                                           
29 E. G. Loewen, Replication of Mirrors and Diffraction Gratings, SPIE Tutorial T10 (1983). 
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 Since the resin is in the liquid state when it is applied to the 
submaster, it must harden sufficiently to ensure that it can maintain the 
groove profile faithfully when the product grating is separated from the 
submaster.  This hardening, or curing, is usually accomplished by a 
room-temperature cure period (lasting from hours to days) or by 
heating the resin to accelerate the curing, though gratings can also be 
replicated using a UV-curable resin.30 

 

 
 

product substrate 

submaster substrate 

parting agent 

submaster metallic   
coating 

submaster resin layer 

transfer coating 

product resin layer 

 

 

Figure 5-1.  The replication “sandwich”, showing the substrates, the resin layers, the 
metallic coatings, and the parting agent.   

 

• Separation. After the resin is fully cured, the groove profile is 
faithfully replicated in the resin when the submaster and product are 
separated.  The parting agent serves as the weak interface and allows 
the separation to take place between the submaster coating and the 
transfer metallic coating.   The groove profile on the product is the 
inverse of the groove profile on the submaster; if this profile is not 
symmetric with respect to this inversion, the efficiency characteristics 

                                                           
30 S. D. Fantone, “Replciating optical surfaces using UV curing cements: a method,” Appl. Opt. 22, 
764 (1983);  R. J. M. Zwiers and G. C. M. Dortant, “Aspheric lenses produced by a fast high-
precision replication process using UV-curable coatings,” Appl. Opt. 24, 4483-4488 (1985). 



 

 66

of the product grating will generally differ from those of the submaster 
grating.  In such cases, an additional replication must be done to invert 
the inverted profile, resulting in a profile identical to that of the original 
submaster.  However, for certain types of gratings, inversion of the 
groove increases efficiency significantly. 

 At this stage, if a transmission grating is desired, the transfer 
coating is removed from the product, leaving the groove structure 
intact in the transparent resin.   

 

• Inspection. After separation, both the submaster and the product 
gratings are inspected for surface or substrate damage.  The product 
grating may also be tested for key performance characteristics (e.g., 
efficiency, wavefront flatness (or curvature), scattered light, alignment 
of the grooves to a substrate edge) depending on requirements. 

 
 The product grating formed by this replication process may be used as an 
optical component, or it may serve as a mold (replication tool) by being 
considered a submaster.  In this way, a single master grating can make several 
submasters, each of which can make several more submasters, etc., to form a 
replication tree (see Figure 5-2).  
 The replication tree shown in Figure 5-2 illustrates two important features 
of replication: extension horizontally (within a generation) and vertically (to 
subsequent generations).  Replication within a generation is accomplished by 
the successive replication of a single grating (much as a parent can have many 
children).  Replication to additional generations is accomplished by forming a 
replica (child), which itself forms a replica (grandchild), etc.  Thus replication 
can extend both within generations (X-1, X-2, X-3, X-4, …) and to subsequent 
generations (X-1, X-1-3, X-1-3-1, X-1-3-1-4, …) to create a large number of 
replicas from a single master grating. 
 As an example, consider a master grating X from which five first-
generation replicas are made (X-1 through X-5).  Each of these is used as a 
submaster to form five replicas: X-1 forms X-1-1 through X-1-5, X-2 forms X-
2-1 through X-2-5, and so on.  This forms twenty-five second generation 
replicas.  If each of these replicas is itself replicated five times, we arrive at 125 
third-generation products (X-1-1-1, X-1-1-2, …, through X-5-5-5).  This 
example illustrates that a large number of replicas can be made from a single 
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master grating, assuming a conservative number of replicas and a reasonable 
number of generations. 
 

  
 

X-1-3-1

X    master grating 

X-1 X-2 X-3 

X-1-3 X-1-1 

first 
generation 

replicas 

second generation replicas 

third generation replicas 
 

 

Figure 5-2.  A replication tree.  Master X is replicated to create several first-generation 
replicas (X-1, X-2, …), which themselves are replicated to form second-generation 
replicas (X-1-1, …), etc.   
 

 The number N of replicas of a particular generation that can be made from a 
single master can be estimated using the following formula, 

  gRN = , (5-1) 

where R is the number of replications per generation and g is the number of 
generations.  Reasonable values of R are 5 to 10 (though values well above 20 
are not unheard of), and g generally ranges from 3 to 9.  Conservatively, then, 
for R = 5 and g = 3, we have N = 125 third-generation replicas; at the other end 
of the ranges we have R = 10 and g = 9 so that N = 1,000,000,000 ninth-
generation replicas.  Of course, one billion replicas of a single grating has never 
been required, but even if it were, Eq. (5-1) assumes that each replica in every 
generation (except the last) is replicated R times, whereas in practice most 
gratings cannot be replicated too many times before being damaged or otherwise 
rendered unusable.  That is, some branches of the replication tree are truncated 
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prematurely.  Consequently, Eq. (5-1) must be taken as an upper limit, which 
becomes unrealistically high as either R or g increase.  In practice, N can be in 
the thousands, and can be even higher if care is taken to ensure that the 
submasters in the replication tree are not damaged. 

5.2. REPLICA GRATINGS VS. MASTER GRATINGS 

 There are two fundamental differences between master gratings and replica 
gratings: how they are made and what they are made of. 
 

Manufacturing process.  Replica gratings are made by the replication 
process outlined in Section 5.1 above – they are resin castings of master 
gratings.  The master gratings themselves, though, are not castings: their 
grooves are created either by burnishing (in the case of ruled gratings) or by 
optical exposure and chemical development (in the case of holographic 
gratings).   

 

Composition.  Replica gratings are composed of a metallic coating on a 
resin layer, which itself rests on a substrate (usually glass).  Master gratings 
also usually have glass substrates, but have no resin (the grooves of a ruled 
master are contained entirely within a metallic layer on the substrate, and 
those of a holographic master are contained entirely within a layer of 
photoresist or similar photosensitive material). 

 
 The differences in manufacturing processes for master gratings and replica 
gratings naturally provide an advantage in both production time and unit cost to 
replica gratings, thereby explaining their popularity, but the replication process 
itself must be designed and carried out to ensure that the performance 
characteristics of the replicated grating match those of the master grating.  
 Exhaustive experimentation has shown how to eliminate loss of resolution 
between master and replica – this is done by ensuring that the surface figure of 
the replica matches that of the master, and that the grooves are not displaced as 
a result of replication.  The efficiency of a replica matches that of its master 
when the groove profile is reproduced faithfully.  Other characteristics, such as 
scattered light, are generally matched as well, provided care is taken during the 
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transfer coating step to ensure a dense metallic layer.  [Even if the layer were 
not dense enough, so that its surface roughness caused increased scattered light 
from the replica when compared with the master, this would be diffuse scatter; 
scatter in the dispersion plane, due to irregularities in the groove spacing, would 
be faithfully replicated by the resin and does not depend significantly on the 
quality of the coating.]  Circumstances in which a master grating is shown to be 
superior to a replicated grating are quite rare, and can often be attributed to 
flaws or errors in the particular replication process used, not to the fact that the 
grating was replicated. 
 In one respect, replicated gratings can provide an advantage over master 
gratings: those cases where the ideal groove profile is not obtainable in a master 
grating, but the inverse profile is obtainable.  Echelle gratings, for example, are 
ruled so that their grooves exhibit a sharp trough but a relatively less sharp peak.  
By replicating, the groove profile is inverted, leaving a first-generation replica 
with a sharp peak.  The efficiency of the replica will be considerably higher than 
the efficiency of the master grating.  In such cases, only odd-generation replicas 
are used as products, since the even-generation replicas have the same groove 
profile (and therefore the same efficiency characteristics) as the master itself.† 
 The most prominent hazard to a grating during the replication process, 
either master or replica, is scratching, since the grating surface consists of a thin 
metal coating on a resin layer.  Scratches involve damage to the groove profile, 
which generally leads to increased stray light, though in some applications this 
may be tolerable.  Scratches faithfully replicate from master to submaster to 
product, and cannot be repaired, since the grating surface is not a polished 
surface, and an overcoating will not repair the damaged grooves. 
 Another hazard during replication is surface contamination from fin-
gerprints; should this happen, a grating can sometimes (but not always) be 
cleaned or recoated to restore it to its original condition.  [In use, accidentally 
evaporated contaminants, typical of vacuum spectrometry pumping systems, can 
be especially harmful when baked on the surface of the grating with ultraviolet 
radiation.] 

                                                           
† By convention, a master grating is designated as the zeroth (0) generation, so the second-, fourth- 
and subsequent even-generation submasters from the master will have the same groove profile, and 
the first-, third- and subsequent odd-generation submasters will have inverted groove profiles. 
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5.3. STABILITY OF REPLICATED GRATINGS  

 

 Temperature.  There is no evidence of deterioration or change in standard 
replica gratings with age or when exposed to thermal variations from the boiling 
point of nitrogen (77 K = –196 °C) to 50 °C.  Gratings that must withstand 
higher temperatures can be made with a special resin whose glass transition 
temperature is high enough to prevent the resin from flowing at high 
temperatures (thereby distorting the grooves).  In addition to choosing the 
appropriate resin, the cure cycle can be modified to result in a grating whose 
grooves will not distort under high temperature. 
 Gratings replicated onto substrates made of low thermal expansion 
materials behave as the substrate dictates: the resin and aluminum, which have 
much higher thermal expansion coefficients, are present in very thin layers 
compared with the substrate thickness and therefore do not expand and contract 
appreciably with temperature changes since they are fixed rigidly to the 
substrate. 
 Relative Humidity.  Standard replicas generally do not show signs of 
degradation in normal use in high relative humidity environments, but some 
applications (e.g., fiber-optic telecommunications) require extended exposure to 
very high humidity environments.  Coatings and epoxies that resist the effects of 
water vapor are necessary for these applications.    
 Instead of a special resin, the metallic coating on a reflection grating made 
with standard resin is often sufficient to protect the underlying resin from the 
effects of water vapor.  A transmission grating that requires protection from 
environmental water vapor can be so protected by applying a dielectric coating 
(e.g., SiO) to its grooved surface.31 
 Temperature and Relative Humidity.  Recent developments in fiber optic 
telecommunications require diffraction gratings that meet harsh environmental 
standards, particularly those in the Telcordia (formerly Bellcore) document GR-
1221, “Generic Reliability Assurance Requirements for Passive Optical 
Components”.  Special resin materials, along with specially-designed 
proprietary replication techniques, have been developed to produce replicated 
gratings that can meet this demanding requirement with no degradation in 
performance.  

                                                           
31 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997), 
p. 582. 
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 High Vacuum.  Even the highest vacuum, such as that of outer space, has no 
effect on replica gratings.  Concerns regarding outgassing from the resin are 
addressed by recognizing that the resin is fully cured.   However, some 
outgassing may occur in high vacuum, which may be a problem for gratings 
used in synchrotron beamlines; in certain cases ruled master gratings are used 
instead.  
 Energy Density of the Beam.  For applications in which the energy density 
at the surface of the grating is very high (as in some pulsed laser applications), 
enough of the energy incident on the grating surface may be absorbed to cause 
damage to the surface.  In these cases, it may be necessary to make the transfer 
coat thicker than normal, or to apply a second metallic layer (an overcoat) to 
increase the opacity of the metal film(s) sufficiently to protect the underlying 
resin from exposure to the light and to permit the thermal energy absorbed from 
the pulse to be dissipated without damaging the groove profile.  Using a metal 
rather than glass substrate is also helpful in that it permits the thermal energy to 
be dissipated; in some cases, a water-cooled metal substrate is used for 
additional benefit.32 
 Pulsed lasers often require optical components with high damage 
thresholds, due to the short pulse duration and high energy of the pulsed beam.   
For gratings used in the infrared, gold is generally used as the reflective coating 
(since it is more reflective than aluminum in the near IR). 
 A continuous-wave laser operating at λ = 10.6 μm was reported by Huguley 
and Loomis33 to generate damage to the surface of replicated grating at about 
150 kW/cm2 or above. 
 Gill and Newnam34 undertook a detailed experimental study of laser-
induced damage of a set of master gratings and a set of replicated gratings using 
30-ps pulses at λ = 1.06 μm.  They reported that the damage threshold for the 
holographic gratings they tested was a factor of 1.5 to 5 times higher than for 
the ruled gratings they tested.  Differences in the damage threshold for S- vs. P-
polarized light were also observed: the threshold for S-polarized light was 1.5 to 

                                                           
32 F. M. Anthony, “High heat load optics: an historical overview,” Opt. Eng. 34, 313-320 (1995). 
33 C. A. Huguley and J. S. Loomis, “Optical material damage from 10.6 μm CW radiation,” in 
Damage in Laser Materials, A. J. Glass and A. H. Guenther, eds., Nat. Bur. Stand. (U.S.) Spec. Publ. 
435 (1975). 
34 D. H. Gill and B. E. Newnam, “Picosecond-pulse damage studies of diffraction gratings,” in 
Damage in Laser Materials, H. E. Bennett, A. H. Guenther, D. Milam and B. E. Newnam, eds., Nat. 
Bur. Stand. (U.S.) Spec. Publ. 727 (1986), pp. 154-161. 
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6 times higher than for P-polarized light, though how this correlates to grating 
efficiency in these polarization states is not clear.  The (holographic) master 
gratings tested exhibited lower damage thresholds than did the replicated 
gratings.  Some of the experimental results reported by Gill and Newnam are 
reproduced in Table 5-1. 
  
 

 Damage Threshold (J/cm2) 
 P polarization S polarization 

 Au coating Al coating Au coating Al coating 
1800 g/mm 
holographic   #1 2.6 0.3 1.2 0.1 

                      #2 1.0 0.3 0.8 0.1 

600 g/mm ruled  1.1 0.2 0.4 0.1 

300 g/mm ruled 0.5 0.3 0.1 0.1 

 

Table 5-1. Damage thresholds reported by Gill and Newnam.  For these gratings, the 
difference in dame threshold measurements between Au and Al coatings, between P- and 
S-polarization, and between the 1800 g/mm holographic gratings and 300 and 600 g/mm 
ruled gratings are evident. 

 
Increasing the thickness of the reflective layer can, in certain circumstances, 
greatly increase the damage threshold of a replicated grating used in pulsed 
beams, presumably by reducing the maximum temperature which the metallic 
coating reaches during illumination.35 
 Experimental damage thresholds for continuous wave (cw) beams, reported 
by Loewen and Popov36, are given in Table 5-2.   
 Coating defects can play a critical role in the incidence of laser damage, as 
reported by Steiger and Brausse,37 who studied optical components illuminated 
by a pulsed Nd:YAG laser operating at λ = 1.06 μm. 

                                                           
35 R. W. C. Hansen, “Replica grating radiation damage in a normal incidence monochromator,” Rev. 
Sci. Instrum. 67 (9), 1-5 (September 1996) 
36 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997), 
p. 485. 
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Grating type Damage Threshold     
(energy density) 

Standard replica grating  
on glass substrate 

 

40 to 80 W/cm2
 

Standard replica grating  
on copper substrate 

 

c. 100 W/cm2
 

Standard replica grating  
on water-cooled copper substrate 

 

150 to 250 W/cm2
 

 

Table 5-2. Damage thresholds for continuous wave (cw) beams.   

 

                                                                                                                                  
37 B. Steiger and H. Brausse, “Interaction of laser radiation with coating defects,” Proc. SPIE 2428, 
559-567 (1995). 
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6. PLANE GRATINGS AND THEIR 
MOUNTS  

 

 

6.1. GRATING MOUNT TERMINOLOGY 

 The auxiliary collimating and focusing optics that modify the wavefronts 
incident on and diffracted by a grating, as well as the angular configuration in 
which it is used, is often called its mount.  Grating mounts are a class of 
spectrometer, a term that usually refers to any spectroscopic instrument, re-
gardless of whether it scans wavelengths individually or entire spectra 
simultaneously, or whether it employs a prism or grating.  For this discussion 
we consider grating spectrometers only.   
 A monochromator is a spectrometer that images a single wavelength or 
wavelength band at a time onto an exit slit; the spectrum is scanned by the 
relative motion of the entrance and/or exit optics (usually slits) with respect to 
the grating.  A spectrograph is a spectrometer that images a range of wave-
lengths simultaneously, either onto photographic film or a series of detector el-
ements, or through several exit slits (sometimes called a polychromator).  The 
defining characteristic of a spectrograph is that an entire section of the spectrum 
is recorded at once. 

6.2. PLANE GRATING MONOCHROMATOR MOUNTS 

 A plane grating is one whose surface is flat.  Plane gratings are normally 
used in collimated incident light, which is dispersed by wavelength but is not 
focused.  Plane grating mounts generally require auxiliary optics, such as lenses 
or mirrors, to collect and focus the energy.  Some simplified plane grating 
mounts illuminate the grating with converging light, though the focal properties 
of the system will then depend on wavelength.  For simplicity, only plane 
reflection grating mounts are discussed below, though each mount may have a 
transmission grating analogue.  
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6.2.1. The Czerny-Turner monochromator38 

 This design involves a classical plane grating illuminated by collimated 
light.  The incident light is usually diverging from a source or slit, and colli-
mated by a concave mirror (the collimator), and the diffracted light is focused 
by a second concave mirror (the camera); see Figure 6-1.  Ideally, since the 
grating is planar and classical, and used in collimated incident light, no 
aberrations should be introduced into the diffracted wavefronts.  In practice, 
since spherical mirrors are often used, aberrations are contributed by their use 
off-axis.39 

 

 

 

camera 

entrance slit 
collimator 

exit slit 

grating 

 

 

Figure 6-1.  The Czerny-Turner mount.  The plane grating provides dispersion and the 
concave mirrors provide focusing. 

  

                                                           
38 A. Shafer, L. Megil and L. Droppelman, “Optimization of Czerny-Turner spectrometers,” J. Opt. 
Soc. Am. 54, 879-888 (1964);  J. M. Simon, M. A. Gil and A. N. Fantino, “Czerny-Turner 
monochromator: astigmatism in the classical and in the crossed beam dispositions,” Appl. Opt. 25, 
3715-3720 (1986);  K. M. Rosfjord, R. A. Villalaz and T. K. Gaylord, “Constant-bandwidth 
scanning of the Czerny-Turner monochromator,” Appl. Opt. 39, 568-572 (2000). 
39 R. F. James and R. S. Sternberg, The Design of Optical Spectrometers, Chapman and Hall 
(London: 1969). 
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 Like all monochromator mounts, the wavelengths are imaged individually.  
The spectrum is scanned by rotating the grating; this moves the grating normal 
relative to the incident and diffracted beams, which (by Eq. (2-1)) changes the 
wavelength diffracted toward the second mirror.  Since the light incident on and 
diffracted by the grating is collimated, the spectrum remains at focus at the exit 
slit for each wavelength, since only the grating can introduce wavelength-de-
pendent focusing properties.  
 Aberrations† caused by the auxiliary mirrors include astigmatism and 
spherical aberration (each of which is contributed additively by the mirrors); as 
with all concave mirror geometries, astigmatism increases as the angle of 
reflection increases.  Coma, though generally present, can be eliminated at one 
wavelength through proper choice of the angles of reflection at the mirrors; due 
to the anamorphic (wavelength-dependent) tangential magnification of the 
grating, the images of the other wavelengths experience higher-order coma 
(which becomes troublesome only in special systems). 

6.2.2. The Ebert-Fastie monochromator40 

 This design is a special case of a Czerny-Turner mount in which a single 
relatively large concave mirror serves as both the collimator and the camera 
(Figure 6-2).  Its use is limited, since stray light and aberrations are difficult to 
control – the latter effect being a consequence of the relatively few degrees of 
freedom in design (compared with a Czerny-Turner monochromator).  This can 
be seen by recognizing that the Ebert-Fastie monochromator is a special case of 
the Czerny-Turner monochromator in which both concave mirror radii are the 
same, and for which their centers of curvature coincide.  However, an advantage 
that the Ebert-Fastie mount provides is the avoidance of relative misalignment 
of the two mirrors. 
 

                                                           
† See Chapter 7 for a discussion of aberrations. 
40 W. G. Fastie, “A small plane grating monochromator,” J. Opt. Soc. Am. 42, 641-647 (1952);  G. 
Fastie, “Image forming properties of the Ebert monochromator,” J. Opt. Soc. Am. 42, 647-652 
(1952). 
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grating 

exit slit 
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Figure 6-2.  The Ebert-Fastie mount.  A single concave mirror replaces the two concave 
mirrors found in Czerny-Turner mounts. 

6.2.3. The Monk-Gillieson monochromator41 

 In this mount (see Figure 6-3), a plane grating is illuminated by converging 
light.  Usually light diverging from an entrance slit (or fiber) is rendered con-
verging by off-axis reflection from a concave mirror (which introduces 
aberrations, so the light incident on the grating is not composed of perfectly 
spherical converging wavefronts).  The grating diffracts the light, which con-
verges toward the exit slit; the spectrum is scanned by rotating the grating to 
bring different wavelengths into focus at or near the exit slit.  Often the angles 
of reflection (from the primary mirror), incidence and diffraction are small 
(measured from the appropriate surface normals), which keeps aberrations 
(especially off-axis astigmatism) to a minimum. 
 Since the incident light is not collimated, the grating introduces 
wavelength-dependent aberrations into the diffracted wavefronts (see Chapter 
7).  Consequently the spectrum cannot remain in focus at a fixed exit slit when 
the grating is rotated (unless this rotation is about an axis displaced from the 

                                                           
41 G. S. Monk, “A mounting for the plane grating,” J. Opt. Soc. Am. 17, 358 (1928);  A. Gillieson, 
“A new spectrographic diffraction grating monochromator,” J. Sci. Instr. 26, 334-339 (1949);  T. 
Kaneko, T. Namioka and M. Seya, “Monk-Gillieson monochromator,” Appl. Opt. 10, 367-381 
(1971);  M. Koike and T. Namioka, “Grazing-incidence Monk-Gillieson monochromator based on 
surface normal rotation of a varied line-spacing grating,” Appl. Opt. 41, 245-257 (2002). 
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central groove of the grating42).  For low-resolution applications, the Monk-
Gillieson mount enjoys a certain amount of popularity, since it represents the 
simplest and least expensive spectrometric system imaginable. 
 

 

 

mirror 
grating 

exit slit 

incident light 

 
 

Figure 6-3.  The Monk-Gillieson mount.  A plane grating is used in converging light. 

6.2.4. The Littrow monochromator43   

 A grating used in the Littrow or autocollimating configuration diffracts 
light of wavelength λ back along the incident light direction (Figure 6-4).  In a 
Littrow monochromator, the spectrum is scanned by rotating the grating; this 
reorients the grating normal, so the angles of incidence α and diffraction β 
change (even though α = β for all λ).  The same auxiliary optics can be used as 
both collimator and camera, since the diffracted rays retrace the incident rays.  
Usually the entrance slit and exit slit (or image plane) will be offset slightly 
along the direction parallel to the grooves so that they do not coincide; this will 

                                                           
42 D. J. Schroeder, "Optimization of converging-beam grating monochromators," J. Opt. Soc. Am. 
60, 1022 (1970). 
43 J. F. James and R. S. Sternberg, The Design of Optical Spectrometers, Chapman and Hall 
(London: 1969);  R. Masters, C. Hslech and H. L. Pardue, “Advantages of an off-Littrow mounting 
of an echelle grating,” Appl. Opt. 27, 3895-3897 (1988). 
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generally introduce out-of-plane aberrations.  True Littrow monochromators are 
quite popular in laser tuning applications (see Chapter 13). 
 

 

 

mirror

grating 

exit slit 

entrance slit 

 

 

Figure 6-4.  The Littrow monochromator mount.  The entrance and exit slits are slightly 
above and below the dispersion plane, respectively; they are shown separated for clarity. 

6.2.5. Double & triple monochromators44   

 Two monochromator mounts used in series form a double monochromator.  
The exit slit of the first monochromator usually serves as the entrance slit for the 
second monochromator (see Figure 6-5), though some systems have been 
designed without an intermediate slit.  Stray light in a double monochromator 
with an intermediate slit is much lower than in a single monochromator: it is 
approximately the product of ratios of stray light intensity to parent line 
intensity for each single monochromator.   

                                                           
44 R. L. Christensen and R. J. Potter, “Double monochromator systems,” Appl. Opt. 2, 1049-1054 
(1963);  F. R. Lipsett, G. Oblinsky and S. Johnson, “Varioilluminator (subtractive double 
monochromator with variable bandpass),” Appl. Opt. 12, 818 (1973). 
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 A double monochromator may be designed to have either additive 
dispersion or subtractive dispersion.   

• In the case of additive dispersion, the reciprocal linear dispersion of the 
entire system is the sum of the reciprocal linear dispersions of each 
monochromator: that is, the spectrum that is dispersed by the first 
monochromator is further dispersion in passing through the second 
monochromator.   
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Figure 6-5.  A double monochromator mount. 

  

• In the case of subtractive dispersion, the entire system is designed so that 
the spectral dispersion at the exit slit of the second monochromator is 
essentially zero; in this case, the dispersion of the double monochromator 
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system is that of the first monochromator.  A subtractive-dispersion 
monochromator has the property that the light leaving its exit slit is 
spectrally uniform: the homogeneous combination of all wavelengths is 
transmitted through the intermediate slit, instead of a spectrum of 
continuous varying wavelength as seen in single monochromators and 
additive-dispersion double monochromators.  Such instruments have found 
use in fluorescence and luminescence excitation.45 

 
 A triple monochromator mount consists of three monochromators in series.  
These mounts are used only when the demands to reduce instrumental stray 
light are extraordinarily severe (e.g., Raman spectroscopy).46 

6.2.6. The constant-scan monochromator 

 The vast majority of monochromator mounts are of the constant deviation 
variety: the grating is rotated to bring different wavelengths into focus at the 
(stationary) exit slit.  This mount has the practical advantage of requiring a 
single rotation stage and no other moving parts, but it has the disadvantage of 
being “on blaze” at only one wavelength – at other wavelengths, the incidence 
and diffraction angles do not satisfy the blaze condition  

  mλ = d (sinα + sinβ) = 2dsinθB, (2-29) 

where θB is the facet angle. 
 An alternative design that may be considered is the constant-scan 
monochromator), so called because in the grating equation 

  mλ = 2d cosK sinφ (2-8) 

it is the scan angle φ rather than the half-deviation angle K that remains fixed.   
In this mount, the bisector of the entrance and exit arms must remain at a 

                                                           
45 F. R. Lipsett, G. Bechtold, F. D. Blair, F. V. Cairns and D. H. O’Hara, “Apparatus for 
measurement of luminescence spectra with a digital recording systems,” Appl. Opt. 9, 1312 (1970). 
46 A. Walsh and J. B. Willis, “Multiple monochromators. IV. A triple monochromator and its 
application to near infrared, visible and ultraviolet spectroscopy,” J. Opt. Soc. Am. 43, 989-993 
(1953). 
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constant angle to the grating normal as the wavelengths are scanned; the angle 
2K = α − β between the two arms must expand and contract to change 
wavelength (see Figure 2-9).   
 Constant-scan plane grating monochromators have been designed47 but 
have not been widely adopted, probably due to the complexity of the required 
mechanisms for the precise movement of the slits.  Hunter described a constant-
scan monochromator for the vacuum ultraviolet in which the entrance and exit 
slits moved along the Rowland circle (see Section 7.2 below).48  The imaging 
properties of the constant-scan monochromator with fixed entrance and exit 
arms have not been fully explored, but since each wavelength remains on blaze, 
there may be applications where this design proves advantageous.   [As noted in 
Section 2.8, though, the efficiency will drop as ⏐2K⏐ increases, i.e. as the 
monochromator is used off-Littrow.] 

6.3. PLANE GRATING SPECTROGRAPH MOUNTS49 

 The plane grating monochromator mounts described in Section 6.2 have an 
exit slit through which a narrow spectral region passes; the center wavelength of 
this spectra region is changed by rotating the grating.  Alternatively, a wide 
spectral region can be imaged at once by leaving the grating fixed and using a 
series of exits slits (or an array of detector elements) in a focal plane.  Such 
optical systems are call spectrographs. 
 Often the imaging properties of a plane grating spectrograph (with no 
auxiliary optics) are acceptable over only a portion of the spectrum of interest, 
which requires the use of additional lenses or mirrors to provide additional 

                                                           
47 C. Kunz, R. Haensel and B. Sonntag, “Grazing-incidence vacuum-ultraviolet monochromator 
with fixed exit slit for use with distant sources,” J. Opt. Soc. Am. 58, 1415 (1968);  H. Deitrich and 
C. Kunz, “A grazing incidence vacuum ultraviolet monochromator with fixed exit slit,” Rev. Sci. 
Inst. 43, 434-442 (1972). 
48 W. R. Hunter, “On-blaze scanning monochromator for the vacuum ultraviolet,” Appl. Opt. 21 
1634-1642 (1982);  W. R. Hunter and J. C. Rife, “Higher-order suppression in an on-blaze plane-
grating monochromator,” Appl. Opt. 23, 293-299 (1984). 
49 R. F. Jarrell, “Stigmatic plane grating spectrograph with order sorter,” J. Opt. Soc. Am. 45, 259-
269 (1955);  J. Reader, “Optimizing Czerny-Turner spectrographs: a comparison between analytic 
theory and ray tracing,” J. Opt. Am. Soc. 59, 1189-1196 (1969);  M. A. Gil, J. M. Simon and A. N. 
Fantino, “Czerny-Turner spectrograph with a wide spectral range,” Appl. Opt. 27, 4069-4072 (1988);  
N. C. Das, “Aberration properties of a Czerny-Turner spectrograph using plane-holographic 
diffraction grating,” Appl. Opt. 30, 3589-3597 (1991). 
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focusing power to render the focal curve as close to the line (or curve) 
represented by the slits or detector array. 
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7. CONCAVE GRATINGS AND THEIR 
MOUNTS   

 

 

7.0. INTRODUCTION 

 A concave reflection grating can be modeled as a concave mirror that 
disperses; it can be thought to reflect and focus light by virtue of its concavity, 
and to disperse light by virtue of its groove pattern. 
 Since their invention by Henry Rowland over one hundred years ago,50 
concave diffraction gratings have played an important role in spectrometry.  
Compared with plane gratings, they offer one important advantage: they provide 
the focusing (imaging) properties to the grating that otherwise must be supplied 
by separate optical elements.  For spectroscopy below 110 nm, for which the 
reflectivity of available mirror coatings is low, concave gratings allow for 
systems free from focusing mirrors that would reduce throughput two or more 
orders of magnitude. 
 Many configurations for concave spectrometers have been designed.  Some 
are variations of the Rowland circle, while some place the spectrum on a flat 
field, which is more suitable for charge-coupled device (CCD) array 
instruments.  The Seya-Namioka concave grating monochromator is especially 
suited for scanning the spectrum by rotating the grating around its own axis. 

7.1. CLASSIFICATION OF GRATING TYPES 

 The imaging characteristics of a concave grating system are governed by 
the size, location and orientation of the entrance and exit optics (the mount), the 
aberrations due to the grating, and the aberrations due to any auxiliary optics in 
the system.  [In this chapter we address only simple systems, in which the 
concave grating is the single optical element; auxiliary mirrors and lenses are 

                                                           
50 H. A. Rowland, “Preliminary notice of the results accomplished in the manufacture and theory of 
gratings for optical purposes,” Philos. Mag. 13, 469 (1882). 
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not considered.]  The imaging properties of the grating itself are determined 
completely by the shape of its substrate (its curvature or figure) and the spacing 
and curvature of the grooves (its groove pattern). 
 Gratings are classified both by their groove patterns and by their substrate 
curvatures.  In Chapter 6, we restricted our attention to plane classical gratings 
and their mounts.  In this chapter, more general gratings and grating systems are 
considered.  

7.1.1. Groove patterns   

 A classical grating is one whose grooves, when projected onto the tangent 
plane, form a set of straight equally-spaced lines.  Until the last few decades, the 
vast majority of gratings were classical, in that any departure from uniform 
spacing, groove parallelism or groove straightness was considered a flaw.  
Classical gratings are made routinely both by mechanical ruling and inter-
ferometric (holographic) recording. 
 A first generation holographic grating has its grooves formed by the 
intersection of a family of confocal hyperboloids (or ellipsoids) with the grating 
substrate.  When projected onto the tangent plane, these grooves have both un-
equal spacing and curvature.  First generation holographic gratings are formed 
by recording the master grating in a field generated by two sets of spherical 
wavefronts, each of which may emanate from a point source or be focused 
toward a virtual point. 
 A second generation holographic grating has the light from its point 
sources reflected by concave mirrors (or transmitted through lenses) so that the 
recording wavefronts are toroidal.51 
 A varied line-space (VLS) grating is one whose grooves, when projected 
onto the tangent plane, form a set of straight parallel lines whose spacing varies 
from groove to groove.  Varying the groove spacing across the surface of the 
grating moves the tangential focal curve, while keeping the groove straight and 
parallel keeps the sagittal focal curve fixed.† 

                                                           
51 C. Palmer, “Theory of second-generation holographic diffraction gratings,” J. Opt. Soc. Am. 6, 
1175-1188 (1989);  T. Namioka and M. Koike, “Aspheric wavefront recording optics for 
holographic gratings,” Appl. Opt. 34, 2180-2186 (1995). 
† The tangential and sagittal focal curves are defined in Section 7.1.2 below. 
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7.1.2. Substrate (blank) shapes   

 A concave grating is one whose surface is concave, regardless of its groove 
pattern or profile, or the mount in which it is used.  Examples are spherical 
substrates (whose surfaces are portions of a sphere, which are definable with 
one radius) and toroidal substrates (definable by two radii).  Spherical substrates 
are by far the most common type of concave substrates, since they are easily 
manufactured and toleranced, and can be replicated in a straightforward manner.  
Toroidal substrates are much more difficult to align, tolerance and replicate, but 
astigmatism (see below) can generally be corrected better than by using a 
spherical substrate.52  More general substrate shapes are also possible, such as 
ellipsoidal or paraboloidal substrates53, but tolerancing and replication 
complications relegate these grating surfaces out of the mainstream.  Moreover, 
the use of aspheric substrates whose surfaces are more general than those of the 
toroid do not provide any additional design freedom for the two lowest-order 
aberrations (defocus and astigmatism; see below)54; as a consequence, there 
have been very few cases (for commercial instrumentation) in which the 
improved imaging due to aspheric substrates has been worth the cost. 
 The shape of a concave grating (considering only spheres & toriods) can be 
characterized either by its radii or its curvatures.  The radii of the slice of the 
substrate in the principal (dispersion) plane is called the tangential radius R, 
while that in the plane parallel to the grooves at the grating center is called the 
sagittal radius ρ.  Equivalently, we can define the tangential curvature 1/R and 
the sagittal curvature 1/ρ.  For a spherical substrate, R = ρ. 
 A plane grating is one whose surface is planar.  While plane gratings can 
be thought of as a special case of concave gratings (for which the radii of 
curvature of the substrate become infinite), we treat them separately here (see 
the previous chapter).  In the equations that follow, the case of a plane grating is 
found simply by letting R (and ρ) → ∞. 

                                                           
52 H. Haber, “The torus grating,” J. Opt. Soc. Am. 40, 153-165 (1950). 
53 T. Namioka, “Theory of the ellipsoidal concave grating. I,” J. Opt. Soc. Am. 51, 4-12 (1961). 
54 C. Palmer, “Limitations of aberration correction in spectrometer imaging,” Proc. SPIE 1055, 359-
369 (1989). 
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7.2. CLASSICAL CONCAVE GRATING IMAGING 

 In Figure 7-1, a classical grating is shown; the Cartesian axes are defined as 
follows: the x-axis is the outward grating normal to the grating surface at its 
center (point O), the y-axis is tangent to the grating surface at O and perpen-
dicular to the grooves there, and the z-axis completes the right-handed triad of 
axes (and is therefore parallel to the grooves at O). Light from point source 
A(ξ, η, 0) is incident on a grating at point O; light of wavelength λ in order m is 
diffracted toward point B(ξ', η', 0).  Since point A was assumed, for simplicity, 
to lie in the xy plane, to which the grooves are perpendicular at point O, the 
image point B will lie in this plane as well; this plane is called the principal 
plane (also called the tangential plane or the dispersion plane (see Figure 7-2).  
Ideally, any point P(x, y, z) located on the grating surface will also diffract light 
from A to B. 
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Figure 7-1.  Use geometry.  The grating surface centered at O diffracts light from point A 
to point B.  P is a general point on the grating surface.  The x-axis points out of the 
grating from its center, the z-axis points along the central groove, and the y-axis 
completes the right-handed triad. 

 

 The plane through points O and B perpendicular to the principal plane is 
called the sagittal plane, which is unique for this wavelength.  The grating tan-
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gent plane is the plane tangent to the grating surface at its center point O (i.e., 
the yz plane).  The imaging effects of the groove spacing and curvature can be 
completely separated from those due to the curvature of the substrate if the 
groove pattern is projected onto this plane. 
 The imaging of this optical system can be investigated by considering the 
optical path difference OPD between the pole ray AOB (where O is the center 
of the grating) and the general ray APB (where P is an arbitrary point on the 
grating surface).  Application of Fermat's principle to this path difference, and 
the subsequent expansion of the results in power series of the coordinates of the 
tangent plane (y and z), yields expressions for the aberrations of the system. 
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Figure 7-2.  Use geometry – the principal plane.  Points A, B and O lie in the xy 
(principal) plane; the general point P on the grating surface may lie outside this plane.  
The z-axis comes out of the page at O. 
 

 The optical path difference is 

  OPD = <APB> – <AOB> + Nmλ, (7-1) 

where <APB> and <AOB> are the geometric lengths of the general and pole 
rays, respectively (both multiplied by the index of refraction), m is the 
diffraction order, and N is the number of grooves on the grating surface between 
points O and P.  The last term in Eq. (7-1) accounts for the fact that the 
distances <APB> and <AOB> need not be exactly equal for the light along both 
rays to be in phase at B: due to the wave nature of light, the light is in phase at B 
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even if there are an integral number of wavelengths between these two dis-
tances.  If points O and P are one groove apart (N = 1), the number of 
wavelengths in the difference <APB> – <AOB> determines the order of 
diffraction m. 
 From geometric considerations, we find 

 <APB>  =  <AP> + <PB>  

   = ( ) ( ) ( ) ( ) 222222 zyxzyx +−′+−′++−+− ηξηξ , (7-2) 

and similarly for <AOB>, if the medium of propagation is air (n ≈ 1).  The 
optical path difference can be expressed more simply if the coordinates of points 
A and B are plane polar rather than Cartesian: letting 

  <AO> = r,     <OB> = r', (7-3) 

we may write 

  ξ = r cosα,     η = r sinα;   
   (7-4) 
  ξ' = r' cosβ,     η' = r' sinβ,  

where the angles of incidence and diffraction (α and β) follow the sign 
convention described in Chapter 2. 
 The power series for OPD can be written in terms of the grating surface 
point coordinates y and z: 

  OPD = ∑ ∑
∞

=

∞

=0 0i j

ji
ij zyF , (7-5) 

where Fij, the expansion coefficient of the (i,j) term, describes how the rays (or 
wavefronts) diffracted from point P toward the ideal image point B differ (in 
direction, or curvature, etc.) in proportion to ji zy  from those from point O.  
The x-dependence of OPD has been suppressed by writing 
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  x = x(y,z) = ∑ ∑
∞

=

∞

=0 0i j

ji
ij zya . (7-6) 

This equation makes use of the fact that the grating surface is usually a regular 
function of position, so x is not independent of y and z (e.g., if it is a spherical 
surface of radius R, then ( ) 2222 RzyRx =++− ). 
 By analogy with the terminology of lens and mirror optics, we call each 
term in series (7-5) an aberration, and Fij its aberration coefficient.  An 
aberration is absent from the image of a given wavelength (in a given diffraction 
order) if its associated coefficient Fij is zero. 
 Since we have imposed a plane of symmetry on the system (the principal 
(xy) plane), all terms Fij for which j is odd vanish.  Moreover, F00 = 0, since the 
expansion (7-5) is about the origin O.  The lowest- (first-) order terms F10 and 
F01 in the expansion must equal zero in accordance with Fermat’s principle.  
Setting F10 = 0  yields the grating equation: 

  mλ = d (sinα + sinβ). (2-1) 

By Fermat's principle, we may take this equation to be satisfied for all images. 
Setting F01 = 0 yields the law of reflection in the plane perpendicular to the 
dispersion plane.  Thus, the second-order aberration terms F20 and F02 are those 
of lowest order that need not necessarily vanish.   
 The generally accepted terminology is that a stigmatic image has vanishing 
second-order coefficients even if higher-order aberrations are still present.  The 
second order terms describe the tangential and sagittal focusing:  

 F20  = ⎟
⎠
⎞

⎜
⎝
⎛ −

′
+⎟

⎠
⎞

⎜
⎝
⎛ − 2020 2

coscos
2

coscos a
r

a
r

β
β

α
α  ≡ T(r, α) + T(r', β), (7-7) 

 F02  = ⎟
⎠

⎞
⎜
⎝

⎛ −
′

+⎟
⎠

⎞
⎜
⎝

⎛ − βα cos
2
1cos

2
1

0202 a
r

a
r

 ≡ S(r, α) + S(r', β). (7-8) 

The coefficient F20 governs the tangential (or spectral) focusing of the grating 
system, while F02 governs the sagittal focusing.  The associated aberrations are 
called defocus and astigmatism, respectively.  These equations may be seen to 
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be generalizations of the Coddington equations that describe the second-order 
focal properties of an aspheric mirror.55 
 The two second-order aberrations describe the extent of a monochromatic 
image: defocus pertains to the blurring of the image – its extent of the image 
along the dispersion direction (i.e., in the tangential plane).  Astigmatism 
pertains to the extent of the image in the direction perpendicular to the dis-
persion direction.  In more common (but sometimes misleading) terminology, 
defocus applies to the "width" of the image in the spectral (dispersion) direction, 
and astigmatism applies to the "height" of the spectral image; these terms imply 
that the xy (tangential) plane be considered as horizontal and the yz (sagittal) 
plane as vertical. 
 Actually astigmatism more correctly defines the condition in which the 
tangential and sagittal foci are not coincident, which implies a line image at the 
tangential focus.  It is a general result of the off-axis use of a concave mirror 
(and, by extension, a concave reflection grating as well).  A complete three-
dimensional treatment of the optical path difference [see Eq. (7.1)] shows that 
the image is actually a conical arc; image points away from the center of the 
ideal image are diffracted toward the longer wavelengths.  This effect, which 
technically is not an aberration, is called (spectral) line curvature, and is most 
noticeable in the spectra of Paschen-Runge mounts (see later in this chapter).56  
Figure 7-3 shows astigmatism in the image of a wavelength diffracted off-axis 
from a concave grating, ignoring line curvature. 
 Since grating images are generally astigmatic, the focal distances r' in Eqs. 
(7-7) and (7-8) should be distinguished. Calling r'T and r'S the tangential and 
sagittal focal distances, respectively, we may set these equations equal to zero 
and solve for the focal curves r'T(λ) and r'S(λ): 

  r'T(λ) = 
β

β
cos

cos2

BA +
, (7-9) 

  r'S(λ) = 
βcos

1
ED +

. (7-10) 

 

                                                           
55 W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 2000), p. 317. 
56 M. C. Hutley, Diffraction Gratings, Academic Press (New York, 1970), pp. 224 ff. 
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Figure 7-3.  Astigmatic focusing of a concave grating.   Light from point A is focused 
into a line parallel to the grooves at TF (the tangential focus) and perpendicular to the 
grooves at SF (the sagittal focus).  Spectral resolution is maximized at TF. 

 

Here we have defined  

  A  =  B cosα 
r

α2cos
− ,      B  =  2 a20,  

   (7-11) 

  D  =  E cosα 
r
1

− ,      E  =  2 a02,  

where a20 and a02 are the coefficients in Eq. (7-6) (e.g., a20 = a02 = 1/(2R) for a 
spherical grating of radius R).  Eqs. (7-9) and (7-10) are completely general for 
classical grating systems; that is, they apply to any type of grating mount or con-
figuration. 
 Of the two primary (second-order) focal curves, that corresponding to 
defocus (F20) is of greater importance in spectroscopy, since it is spectral 
resolution that is most crucial to grating systems.  For this reason we do not con-
cern ourselves with locating the image plane at the "circle of least confusion"; 
rather, we try to place the image plane at or near the tangential focus (where F20 
= 0).  For concave gratings (a20 ≠ 0), there are two well-known solutions to the 
defocus equation F20 = 0: those of Rowland and Wadsworth. 
 The Rowland circle is a circle whose diameter is equal to the tangential 
radius of the grating substrate, and which passes through the grating center 
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(point O in Figure 7-5).  If the point source A is placed on this circle, the 
tangential focal curve also lies on this circle.  This solution is the basis for the 
Rowland circle and Paschen-Runge mounts.  For the Rowland circle mount, 

  r = 
202

cos
a

α = R cosα,  

   (7-12) 

  r'S =  
202

cos
a

β = R cosβ.  

The sagittal focal curve is  

  r'S = 
1

cos
1coscos

−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+
αρ

βα
R

 (7-13) 

(where ρ is the sagittal radius of the grating), which is always greater than r'T 
(even for a spherical substrate, for which ρ = R) unless α = β = 0.  Consequently 
this mount suffers from astigmatism, which in some cases is considerable. 
 The Wadsworth mount is one in which the incident light is collimated 
(r →  ∞), so that the tangential focal curve is given by 

  r'T = ( )βα
β

coscos2
cos

20

2

+a
  = 

βα
β

coscos
cos2

+
R , (7-14) 

and the sagittal focal curve is  

  r'S = ( )βα coscos2
1

02 +a
  = 

βα
ρ

coscos +
. (7-15) 

In this mount, the imaging from a classical spherical grating (ρ = R) is such that 
the astigmatism of the image is zero only for β = 0, though this is true for any 
incidence angle α. 
 While higher-order aberrations are usually of less importance than defocus 
and astigmatism, they can be significant.  The third-order aberrations, primary 
or tangential coma F30 and secondary or sagittal coma F12, are given by 



 

 95

  F30 = 
r
αsin  T(r, α) + 

r ′
βsin  T(r', β) – a30 (cosα + cosβ) ,  (7-16) 

  F12 = 
r
αsin  S(r, α) + 

r ′
βsin  S(r', β) – a12 (cosα + cosβ) ,  (7-17) 

where T and S are defined in Eqs. (7-7) and (7-8).  Often one or both of these 
third-order aberrations is significant in a spectral image, and must be minimized 
with the second-order aberrations. 

7.3. NONCLASSICAL CONCAVE GRATING IMAGING 

 For nonclassical groove patterns, the aberration coefficients Fij must be 
generalized to account for the image-modifying effects of the variations in 
curvature and spacing of the grooves, as well as for the focusing effects of the 
concave substrate: 

  Fij  = Mij  + 
0λ
λm  Hij ≡  Mij  + H'ij . (7-18) 

The terms Mij are simply those Fij coefficients for classical concave grating 
mounts, discussed in Section 7.2 above.  The H'ij coefficients describe how the 
groove pattern differs from that of a classical grating (for classical gratings, H'ij 
= 0 for all terms of order two or higher (i + j ≥ 2)).  The tangential and sagittal 
focal distances (Eqs. (7-9) and (7-10)) must now be generalized: 

  r'T(λ) =
ββ

β
sincos

cos2

CBA ++
, (7-19) 

  r'S(λ) =
ββ sincos

1
FED ++

, (7-20) 

where in addition to Eqs. (7-11) we have 
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  C  =  – 2 H'20,      F  =  – 2 H'02. (7-21) 

Here H'20 and H'02 are the terms that govern the effect of the groove pattern on 
the tangential and sagittal focusing.  For a first generation holographic grating, 
for example, the Hij coefficients may be written in terms of the parameters of the 
recording geometry (see Figure 7-4): 

  H'20  = – T(rC, γ) + T(rD, δ), (7-22) 

  H'02  = – S(rC, γ) + S(rD, δ), (7-23) 

 

where C(rC, γ) and D(rD, δ) are the plane polar coordinates of the recording 
points.  These equations are quite similar to Eqs. (7-7) and (7-8), due to the 
similarity between Figures 7-4 and 7-2. 
 
 

 

D

C
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y

O γ 
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Figure 7-4.  Recording parameters.  Spherical waves emanate from point sources C and 
D; the interference pattern forms fringes on the concave substrate centered at O. 

 

 Nonclassical concave gratings are generally produced holographically, but 
for certain applications, they can be made by mechanical ruling as well, by 
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changing the groove spacing from one groove to the next during ruling57, by 
curving the grooves58, or both.59  For such varied line-space (VLS) gratings (see 
Chapter 4), the terms Hij are written in terms of the groove spacing coefficients 
rather than in terms of recording coordinates.60 
 Several important conclusions may be drawn from the formalism developed 
above for grating system imaging.61 

• The imaging effects of the shape of the grating substrate (manifest in 
the coefficients aij) and the groove pattern (manifest in the coefficients 
Hij) are completely separable.   

• The imaging effects of the shape of the grating substrate are contained 
completely in terms that are formally identical to those for the identical 
mirrors substrate, except that the diffraction angle is given by the 
grating equation (Eq. (2-1)) rather than the law of reflection. 

• The imaging effects of the groove pattern are dictated completely by 
the spacing and curvature of the grooves when projected onto the plane 
tangent to the grating surface at its center. 

• The y-dependence of the groove pattern governs the local groove 
spacing, which in turn governs the tangential aberrations of the system. 

• The z-dependence of the groove pattern governs the local groove 
curvature, which in turn governs the sagittal aberrations of the system. 

 More details on the imaging properties of gratings systems can be found in 
Namioka62and Noda et al.63 

                                                           
57 Y. Sakayanagi, “A stigmatic concave gating with varying spacing,” Sci. Light 16, 129-137 (1967). 
58 Y. Sakayanagi, Sci. Light 3, 1 (1954). 
59 T. Harada, S. Moriyama and T. Kita, “Mechanically ruled stigmatic concave gratings,” Japan. J. 
Appl. Phys. 14, 175-179 (1974). 
60 C. Palmer and W. R. McKinney, "Equivalence of focusing conditions for holographic and varied 
line-space gratings," Appl. Opt. 29, 47-51 (1990). 
61 C. Palmer and W. R. McKinney, "Imaging theory of plane-symmetric varied line-space grating 
systems," Opt. Eng. 33, 820-829 (1994). 
62 T. Namioka, "Theory of the concave grating," J. Opt. Soc. Am. 49, 446 (1959). 
63 H. Noda, T. Namioka and M. Seya, "Geometric theory of the grating," J. Opt. Soc. Am. 64, 1031-
1036 (1974). 
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7.4. REDUCTION OF ABERRATIONS 

 In the design of grating systems, there exist several degrees of freedom 
whose values may be chosen to optimize image quality.  For monochromators, 
the locations of the entrance slit A and exit slit B relative to the grating center O 
provide three degrees of freedom (or four, if no plane of symmetry is imposed); 
the missing degree of freedom is restricted by the grating equation, which sets 
the angular relationship between the lines AO and BO.  For spectrographs, the 
location of the entrance slit A as well as the location, orientation and curvature 
of the image field provide degrees of freedom (though the grating equation must 
be satisfied).  In addition, the curvature of the grating substrate provides 
freedom, and the aberration coefficients H'ij for a holographic grating (or the 
equivalent terms for a VLS grating) can be chosen to improve imaging.  Even in 
systems for which the grating use geometry (the mount) has been specified, 
there exist several degrees of freedom due to the aberration reduction possibili-
ties of the grating itself. 
 Algebraic techniques can find sets of design parameter values that minimize 
image size at one or two wavelengths, but to optimize the imaging of an entire 
spectral range is usually so complicated that computer implementation of a 
design procedure is essential.  Newport has developed a set of proprietary 
computer programs that are used to design and analyze grating systems.  These 
programs allow selected sets of parameter values governing the use and record-
ing geometries to vary within prescribed limits.  Optimal imaging is found by 
comparing the imaging properties for systems with different sets of parameters 
values. 
 Design techniques for grating systems that minimize aberrations may be 
classified into two groups: those that consider wavefront aberrations and those 
that consider ray deviations.  The wavefront aberration theory of grating 
systems was developed by Beutler64 and Namioka65, and was presented in 
Section 7.2.  The latter group contains both the familiar raytrace techniques used 
in commercial optical design software and the Lie aberration theory developed 
by Dragt.66  The principles of optical raytrace techniques are widely known and 

                                                           
64 H. G. Beutler, "The theory of the concave grating,” J. Opt. Soc. Am. 35, 311-350 (1945). 
65 T.  Namioka, "Theory of the concave grating,” J. Opt. Soc. Am. 49, 446-460 (1959). 
66 A. J. Dragt, "Lie algebraic theory of geometrical optics and optical aberrations,” J. Opt. Soc. Am. 
72, 372-379 (1982);  K. Goto and T. Kurosaki, "Canonical formulation for the geometrical optics of 
concave gratings,” J. Opt. Soc. Am. A10, 452-465 (1993);  C. Palmer, W. R. McKinney and B. 
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taught in college courses, and are the basis of a number of commercially-
available optical design software packages, so they will not be addressed here, 
but the concepts of Lie aberration theory are not widely known – for the 
interested reader they are summarized in Appendix B.   
 Design algorithms generally identify a merit function, an expression that 
returns a single value for any set of design parameter arguments; this allows two 
different sets of design parameter values to be compared quantitatively.  
Generally, merit functions are designed so that lower values correspond to better 
designs – that is, the ideal figure of merit is zero.   
 For grating system design, a number of merit functions may be defined.  
The Newport proprietary design software uses the function 

  M = w’ + ch’, (7-24) 

where w’ and h’ are the width (in the dispersion plane) and height 
(perpendicular to the dispersion plane) of the image, and c is a constant 
weighting factor.67   Minimizing M therefore reduces both the width and the 
height of the diffracted image.  Since image width (which affects spectral 
resolution) is almost always more important to reduce than image height, c is 
generally chosen to be much less than unity.  If w’ is expressed not as a 
geometric width (say, in millimeters) but a spectral width (in nanometers), then 
M will have these units as well; since h’ is in millimeters (there being no 
dispersion in the direction in which h’ is measured), c will have the units of 
reciprocal linear dispersion (e.g., nm/mm) but it is not a measure of reciprocal 
linear dispersion – c is merely a weighting factor introduced in Eq. (7-24) to 
ensure that image width and image height are properly weighted in the 
optimization routine. 
 For optimization over a spectral range λ1 ≤ λ ≤ λ2, Eq. (7-24) can be 
generalized to define the merit function as the maximum value of w’ + ch’ over 
all wavelengths: 

                                                                                                                                  
Wheeler, "Imaging equations for spectroscopic systems using Lie Transformations.  Part I – 
Theoretical foundations,” Proc. SPIE 3450, 55-66 (1998);  C. Palmer, B. Wheeler and W. R. 
McKinney, "Imaging equations for spectroscopic systems using Lie transformations. Part II - Multi-
element systems," Proc. SPIE 3450, 67-77 (1998). 
67 W. R. McKinney and C. Palmer, "Numerical design method for aberration-reduced concave 
grating spectrometers,” Appl. Opt. 26, 3018-3118 (1987). 
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  M = ( ) ( ){ }λλ
λ

hcw ′+sup , (7-25) 

where the supremum function sup{} returns the maximum value of all of its 
arguments.  Defining a merit function in the form of Eq. (7-25) minimizes the 
maximum value of w’ + ch’ over all wavelengths considered.  [A more general 
form would allow the weighting factor to be wavelength-specific, i.e., c → 
c(λ).] 
 Eqs. (7-24) and (7-25) consider the ray deviations in the image plane, 
determined either by direct ray tracing or by converting wavefront aberrations 
into ray deviations.  An alternative merit function may be defined using Eqs. 
(7-19) and (7-20), the expressions for the tangential and sagittal focal distances.  
Following Schroeder68, we define the quantity Δ(λ) as 

  Δ(λ) = ( ) ( )λλ ST

11
rr ′

−
′

, (7-26) 

leading to the following merit function: 

  M = ( ){ }λ
λ
Δsup . (7-27) 

This version of M will consider second-order aberrations only (i.e., F20 
(defocus) and F02 (astigmatism)) to minimize the distances between the 
tangential and sagittal focal curves for each wavelength in the spectrum.69 
 Noda et al.70 have suggested using as the merit function the integral of the 
square of an aberration coefficient, 

  M = ( )( )2d λλ
λ

ijF∫ , (7-28) 

                                                           
68 D. J. Schroeder, Astronomical Optics (Academic Press, New York, 1987), pp. 64 & 263. 
69 C. Palmer, "Deviation of second-order focal curves in common plane-symmetric spectrometer 
mounts,” J. Opt. Soc Am. A7, 1770-1778 (1990). 
70 H. Noda, T. Namioka and M. Seya, "Geometric theory of the grating,” J. Opt. Soc Am. 64, 1031-
1036 (1974). 
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where the integration is over the spectrum of interest (λ1 ≤ λ ≤ λ2).  Choosing 
defocus (F20) as the aberration term would, however, not require the design 
routine to minimize astigmatism as well.  A number N of aberrations may be 
considered, but this requires the simultaneous minimization of N merit functions 
of the form given by Eq. (7-28).71 
 Two other merit functions have been used in the design of spectrometer 
systems are the Strehl ratio72 and the quality factor.73 

7.5. CONCAVE GRATING MOUNTS 

 As with plane grating mounts, concave grating mounts can be either 
monochromators or spectrographs.  

7.5.1. The Rowland circle spectrograph   

 The first concave gratings of spectroscopic quality were ruled by Rowland, 
who also designing their first mounting.  Placing the ideal source point on the 
Rowland circle (see Eqs. (7-12) and Figure 7-5) forms spectra on that circle free 
from defocus and primary coma at all wavelengths (i.e., F20 = F30 = 0 for all λ); 
while spherical aberration is residual and small, astigmatism is usually severe. 
Originally a Rowland circle spectrograph employed a photographic plate bent 
along a circular arc on the Rowland circle to record the spectrum in its entirety.   
 Today it is more common for a series of exit slits to be cut into a circular 
mask to allow the recording of several discrete wavelengths photoelectrically; 
this system is called the Paschen-Runge mount.  Other configurations based on 
the imaging properties of the Rowland circle are the Eagle mount and the Abney 
mount, both of which are described by Hutley74 and by Meltzer.75 

                                                           
71 E. Sokolova, B. Kruizinga and I. Gulobenko, “Recording of concave diffraction gratings in a two-
step process using spatially incoherent light,” Opt. Eng. 43, 2613-2622 (2004). 
72 W. T. Welford, “Aberration tolerances for spectrum line images,” Opt. Acta 10, 121-127 (1963). 
73 M. Pouey, “Comparison between far ultraviolet spectrometers,” Opt. Commun. 2, 339-342 (1970). 
74 M. C. Hutley, Diffraction Gratings, Academic Press (New York, 1970). 
75 R. J. Meltzer,  "Spectrographs and Monochromators," in Applied Optics and Optical Engineering, 
vol. V (chapter 3), R. Shannon, ed., Academic Press (New York: 1969). 
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 Unless the exit slits (or photographic plates) are considerably taller than the 
entrance slit, the astigmatism of Rowland circle mounts usually prevents more 
than a small fraction of the diffracted light from being recorded, which greatly 
decreases the efficiency of the instrument.  Increasing the exit slit heights helps 
collect more light, but since the images are curved, the exit slits would have to 
be curved as well to maintain optimal resolution.  To complicate matters further, 
this curvature depends on the diffracted wavelength, so each exit slit would 
require a unique curvature.  Few instruments have gone to such trouble, so most 
Rowland circle grating mounts collect only a small portion of the light incident 
on the grating.  For this reason these mounts are adequate for strong sources 
(such as the observation of the solar spectrum) but not for less intense sources 
(such as stellar spectra). 
 

  

 

spectrum 

entrance slit 

grating 

Rowland circle 

λ 1 

λ 2 

 
 

Figure 7-5.  The Rowland Circle spectrograph.  Both the entrance slit and the diffracted 
spectrum lie on the Rowland circle, whose diameter equals the tangential radius of 
curvature R of the grating and that passes through the grating center.  Light of two 
wavelengths is shown focused at different points on the Rowland circle. 

 
 The imaging properties of instruments based on the Rowland circle 
spectrograph, such as direct readers and atomic absorption instruments, can be 
improved by the use of nonclassical gratings.  By replacing the usual concave 
classical gratings with concave aberration-reduced gratings, astigmatism can be 
improved substantially.  Rowland circle mounts modified in this manner direct 
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more diffracted light through the exit slits, though often at the expense of 
degrading resolution to some degree. 

7.5.2. The Wadsworth spectrograph     

 When a classical concave grating is illuminated with collimated light 
(rather than from a point source on the Rowland circle), spectral astigmatism on 
and near the grating normal is greatly reduced.  Such a grating system is called 
the Wadsworth mount (see Figure 7-6).76  The wavelength-dependent 
aberrations of the grating are compounded by the aberration of the collimating 
optics, though use of a paraboloidal mirror illuminated on-axis will reduce off-
axis aberrations and spherical aberrations.  The Wadsworth mount suggests 
itself in situations in which the light incident on the grating is naturally 
collimated (from, for example, astronomical sources).  In other cases, an off-
axis parabolic mirror would serve well as the collimating element. 
 
 

 

grating 

spectrum 

GN 

 

 

Figure 7-6.  The Wadsworth spectrograph.  Collimated light is incident on a concave 
grating; light of two wavelengths is shown focused at different points.  GN is the grating 
normal. 

                                                           
76 F. Wadsworth, “The modern spectroscope,” Astrophys. J. 3, 47-62 (1896). 



 

 104

7.5.3. Flat-field spectrographs       

 One of the advantages of changing the groove pattern (as on a first- or 
second- generation holographic grating or a VLS grating) is that the focal 
curves can be modified, yielding grating mounts that differ from the classical 
ones.  A logical improvement of this kind on the Rowland circle spectrograph is 
the flat-field spectrograph, in which the tangential focal curve is removed from 
the Rowland circle and rendered nearly linear over the spectrum of interest (see 
Figure 7-7).  While a grating cannot be made that images a spectrum perfectly 
on a line, one that forms a spectrum on a sufficiently flat surface is ideal for use 
in linear detector array instruments of moderate resolution.  This development 
has had a significant effect on spectrograph design. 
  

 

 

grating 
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Figure 7-7.  A flat-field spectrograph.   The spectrum from λ1 to λ2 (>λ1) is shown 
imaged onto a line. 

 
 The relative displacement between the tangential and sagittal focal curves 
can also be reduced via VLS or interferometric modification of the groove 
pattern.  In this way, the resolution of a flat-field spectrometer can be 
maintained (or improved) while its astigmatism is decreased; the latter effect 
allows more light to be transmitted through the exit slit (or onto the detector 
elements).  An example of the process of aberration reduction is shown in 
Figure 7-8. 
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(a) (b) (c)  
  

Figure 7-8.  Modification of focal curves.   The primary tangential focal curve (F20 = 0) 
is thick; the primary sagittal focal curve (F02 = 0) is thin.  (a) Focal curves for a classical 
(H20 = H02 = 0) concave grating, illuminated off the normal (α ≠ 0) – the dark curve is an 
arc of the Rowland circle.  (b) Choosing a suitable nonzero H20 value moves the 
tangential focal arc so that part of it is nearly linear, suitable for a flat-field spectrograph 
detector.  (c)  Choosing a suitable nonzero value of H02 moves the sagittal focal curve so 
that it crosses the tangential focal curve, providing a stigmatic image. 

7.5.4. Imaging spectrographs and monochromators77 

 Concave gratings may also be used in imaging spectrographs, which are 
instruments for which a spectrum is obtained for different spatial regions in the 
object plane.  For example, an imaging spectrometer may generate a two-
dimensional spatial image on a detector array, and for each such image, 
a spectrum is scanned (over time); alternatively, a spectrum can be recorded for 
a linear slice of the image, and the slice itself can be moved across the image to 
provide the second spatial dimension (sometimes called the “push broom” 
technique). 

                                                           
77 M. Descour and E. Dereliak, “Computed-tomography imaging spectrometer: experimental 
calibration and reconstruction results,” Appl. Opt. 34, 4817-4826 (1995); P. Mouroulis, D. W. 
Wilson, P. D. Maker and R. E. Muller, “Convex grating types for concentric imaging spectrometers,” 
Appl. Opt. 37, 7200-7028 (1998); M. Beasley, C. Boone, N. Cunningham, J. Green and E. 
Wilkinson, “Imaging spectrograph for interstellar shocks: a narrowband imaging payload for the far 
ultraviolet,” Appl. Opt. 43, 4633-4642 (2004). 
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7.5.5. Constant-deviation monochromators 

 In a constant-deviation monochromator, the angle 2K between the entrance 
and exit arms is held constant as the grating is rotated (thus scanning the 
spectrum; see Figure 7-9).  This angle is called the deviation angle or angular 
deviation (AD).  While plane or concave gratings can be used in constant-de-
viation mounts, only in the latter case can imaging be made acceptable over an 
entire spectrum without auxiliary focusing optics.    
 

  

Α 

Β 
2K

 
  
Figure 7-9.  Constant-deviation monochromator geometry.   To scan wavelengths, the 
entrance slit A and exit slit B remain fixed as the grating rotates.  The deviation angle 2K 
is measured from the exit arm to the entrance arm.  The Seya-Namioka monochromator 
is a special case for which Eqs. (7-29) are satisfied. 

 
 The Seya-Namioka monochromator78 is a very special case of constant-
deviation mount using a classical spherical grating, in which the deviation angle 
2K between the beams and the entrance and exit slit distances (r and r') are 
given by 

                                                           
78 M. Seya, "A new mounting of concave grating suitable for a spectrometer," Science of Light 2, 8-
17 (1952);  T. Namioka, “Theory of the concave grating. III. Seya-Namioka monochromator,” J. 
Opt. Soc. Am. 49, 951-961 (1959). 
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  2K = 70°30',     r = r' = R cos(70°30'/2), (7-29) 

where R is the radius of the spherical grating substrate.  The only moving part in 
this system is the grating, through whose rotation the spectrum is scanned.  
Resolution may be quite good in part of the spectrum, though it degrades farther 
from the optimal wavelength; astigmatism is high, but at an optimum.  
Replacing the grating with a classical toroidal grating can reduce the 
astigmatism, if the minor radius of the toroid is chosen judiciously.  The 
reduction of astigmatism by suitably designed holographic gratings is also 
helpful, though the best way to optimize the imaging of a constant-deviation 
monochromator is to relax the restrictions given by Eqs. (7-29) on the use 
geometry. 
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 8. IMAGING PROPERTIES OF GRATING 
SYSTEMS   

 
 

8.1. CHARACTERIZATION OF IMAGING QUALITY 

 In Chapter 7, we formulated the optical imaging properties of a grating sys-
tem in terms of wavefront aberrations.  After arriving at a design, though, this 
approach is not ideal for observing the imaging properties of the system.  Two 
tools of image analysis – spot diagrams and linespread functions – are discussed 
below. 

8.1.1. Geometric raytracing and spot diagrams 

 Raytracing (using the laws of geometrical optics) is superior to wavefront 
aberration analysis in the determination of image quality.  Aberration analysis is 
an approximation to image analysis, since it involves expanding quantities in 
infinite power series and considering only a few terms.  Raytracing, on the other 
hand, does not involve approximations, but shows (in the absence of the 
diffractive effects of physical optics) where each ray of light incident on the 
grating will diffract.  It would be more exact to design grating systems with 
a raytracing procedure as well, though to do so would be computationally 
cumbersome. 
 The set of intersections of the diffracted rays and the image plane forms 
a set of points, called a spot diagram.  In Figure 8-1, several simple spot 
diagrams are shown; their horizontal axes are in the plane of dispersion (the 
tangential plane), and their vertical axes are in the sagittal plane.  In (a) an 
uncorrected (out-of-focus) image is shown; (b) shows good tangential focusing, 
and (c) shows virtually point-like imaging.  All three of these images are 
simplistic in that they ignore the effects of line curvature as well as higher-order 
aberrations (such as coma and spherical aberration), which render typical spot 
diagrams asymmetric, as in (d). 
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(a) (b)

(c) (d)  
  

Figure 8-1.  Spot diagrams.  In (a) the image is out of focus.  In (b), the image is well 
focused in the tangential plane only; the line curvature inherent to grating-diffracted 
images is shown.  In (c) the image is well focused in both directions – the individual 
spots are not discernible.  In (d) a more realistic image is shown. 

 

 A straightforward method of evaluating the imaging properties of 
a spectrometer at a given wavelength is to measure the tangential and sagittal 
extent of an image (often called the width w' and height h' of the image, 
respectively), as in Figure 8-2. 
 Geometric raytracing provides spot diagrams in good agreement with 
observed spectrometer images, except for well-focused images, in which the 
wave nature of light dictates a minimum size for the image.  Even if the image 
of a point object is completely without aberrations, it is not a point image, due to 
the diffraction effects of the pupil (which is usually the perimeter of the grat-
ing).  The minimal image size, called the diffraction limit, can be estimated for 
a given wavelength as the diameter a of the Airy disk for a mirror in the same 
geometry:  



 

 111

  a = 2.44λ ƒ/noOUTPUT = 2.44λ ( )
β

λ
cos
'

W
r . (8-1) 

Here ƒ/noOUTPUT is the output focal ratio, r'(λ) is the focal distance for this 
wavelength, and W is the width of the grating (see Eq. (2-25), Chapter 2).  
Results from raytrace analyses that use the laws of geometrical optics only 
should not be considered valid if the dimensions of the image are found to be 
near or below the diffraction limit calculated from Eq. (8-1).   
 

 

w'

h'

 

Figure 8-2.  Image dimensions.  The width w' and height h' of the image in the image 
plane are the dimensions of the smallest rectangle that contains the spots.  The sides of 
the rectangle are taken to be parallel (w') and perpendicular (h') to the principal plane. 

8.1.2. Linespread calculations 

 A fundamental problem with geometric raytracing procedures (other than 
that they ignore the variations in energy density throughout a cross-section of 
the diffracted beam and the diffraction efficiency of the grating) is its ignorance 
of the effect that the size and shape of the exit aperture has on the measured 
resolution of the instrument. 
 An alternative to merely measuring the extent of a spectral image is to 
compute its linespread function, which is the convolution of the 
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(monochromatic) image of the entrance slit with the exit aperture (the exit slit in 
a monochromator, or a detector element in a spectrograph).  A close physical 
equivalent is obtained by scanning the monochromatic image by moving the exit 
aperture past it in the image plane, and recording the light intensity passing 
through the slit as a function of position in this plane. 
 The linespread calculation thus described accounts for the effect that the 
entrance and exit slit dimensions have on the resolution of the grating system. 

8.2. INSTRUMENTAL IMAGING 

 With regard to the imaging of actual optical instruments, it is not sufficient 
to state that ideal performance (in which geometrical aberrations are completely 
eliminated and the diffraction limit is ignored) is to focus a point object to 
a point image.  All real sources are extended sources – that is, they have finite 
widths and heights.   

8.2.1. Magnification of the entrance aperture 

 The image of the entrance slit, ignoring aberrations and the diffraction limit, 
will not have the same dimensions as the entrance slit itself.  Calling w and h the 
width and height of the entrance slit, and w' and h' the width and height of its 
image, the tangential and sagittal magnifications χT and χS are 

  χT ≡  
w
w′

 = 
β
α

cos
cos

r
r ′

,      χS ≡  
h
h′

 =
r
r ′

. (8-2) 

 These relations, which indicate that the size of the image of the entrance slit 
will usually differ from that of the entrance slit itself, are derived below. 
 Figure 8-3 shows the plane of dispersion.  The grating center is at O; the 
x-axis is the grating normal and the y-axis is the line through the grating center 
perpendicular to the grooves at O.  Monochromatic light of wavelength λ leaves 
the entrance slit (of width w) located at the polar coordinates (r, α) from the 
grating center O and is diffracted along angle β.  When seen from O, the 
entrance slit subtends an angle Δα = w/r in the dispersion (xy) plane.  Rays from 
one edge of the entrance slit have incidence angle α, and are diffracted along β; 
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rays from the other edge have incidence angle α + Δα, and are diffracted along 
β – Δβ.†  The image (located a distance r' from O), therefore subtends an angle 
Δβ when seen from O, has width w' = r'Δβ.  The ratio χT  = w'/w is the 
tangential magnification. 
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Figure 8-3.  Geometry showing tangential magnification.  Monochromatic light from the 
entrance slit, of width w, is projected by the grating to form an image of width w'.  

 

 We may apply the grating equation to the rays on either side of the entrance 
slit: 

  Gmλ = sinα + sinβ, (8-3) 

  Gmλ = sin(α+Δα)+ sin(β–Δβ). (8-4) 

Here G (= 1/d) is the groove frequency along the y-axis at O, and m is the 
diffraction order.  Expanding sin(α+Δα) in Eq. (8-4) in a Taylor series about 
Δα = 0, we obtain 

  sin(α+Δα) = sinα + (cosα )Δα + ..., (8-5) 

                                                           
† In this section, both Δα and Δβ are taken to be positive incremental angles, so by Eq. (2-1), a 
positive change in α will lead to a negative change in β. 
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where terms of order two or higher in Δα have been truncated.  Using Eq. (8-5) 
(and its analogue for sin(β–Δβ)) in Eq. (8-4), and subtracting it from Eq. (8-3), 
we obtain 

  cosα Δα = cosβ Δβ, (8-6) 

and therefore 

  
β
α

α
β

cos
cos

=
Δ
Δ , (8-7) 

from which the first of Eqs. (8-2) follows. 
 Figure 8-4 shows the same situation in the sagittal plane, which is 
perpendicular to the principal plane and contains the pole diffracted ray.  The 
entrance slit is located below the principal plane; consequently, its image is 
above this plane.  A ray from the top of the center of the entrance slit is shown.  
Since the grooves are parallel to the sagittal plane at O, the grating acts as a 
mirror in this plane, so the angles φ and φ' are equal in magnitude.   
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Figure 8-4.  Geometry showing sagittal magnification.  Monochromatic light from the 
entrance slit, of height h, is projected by the grating to form an image of height h'. 
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Ignoring signs, the tangents of these angles are equal as well: 

  tanφ = tanφ'    →     
r
z

r
z

′
′

= , (8-8) 

where z and z' are the distances from the entrance and exit slit points to the 
principal plane.  A ray from an entrance slit point a distance |z + h| from this 
plane will image toward a point |z' + h'| from this plane, where h' now defines 
the height of the image.  As this ray is governed by reflection as well, 

  tanψ = tanψ'    →      
r

hz
r

hz
′

′+′
=

+ . (8-9) 

Simplifying this using Eq. (8-8) yields the latter of Eqs. (8-2). 

8.2.2. Effects of the entrance aperture dimensions 

 Consider a spectrometer with a point source located in the principal plane: 
the aberrated image of this point source has width δw' (in the dispersion 
direction) and height δh' (see Figure 8-5).  If the point source is located out of 
the principal plane, it will generally be distorted, tilted and enlarged: its 
dimensions are now δW' and δH'.  Because a point source is considered, these 
image dimensions are not due to any magnification effects of the system. 
 

 
Figure 8-5.  Point source imaging.   A point source is imaged by the system; the upper 
image is for a point source located at the center of the entrance slit (in the dispersion 
plane), and the lower image shows how this image is tilted and distorted (and generally 
gets larger) for a point source off the dispersion plane. 

system 
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 Now consider a rectangular entrance slit of width W0 (in the dispersion 
plane) and height H0.  If we ignore aberrations and line curvature (see Section 
7.2) for the moment, we see that the image of the entrance slit is also a 
rectangle, whose width W0' and height H0' are magnified: 

  W0' = χT W0,  
   (8-10) 
  H0' = χS H0  

 (see Figure 8-6).   
 

 
Figure 8-6.  Entrance slit imaging (without aberrations).   Ignoring aberrations and line 
curvature, the image of a rectangular entrance slit is also a rectangle, one that has been 
magnified in both directions. 

 

 Combining these two cases provides the following illustration (Figure 8-7).  
From this figure, we can estimate the width W' and height H' of the image of the 
entrance slit, considering both magnification effects and aberrations, as follows: 

  W' = χT W0 + δW' = 0cos
cos W

r
r

β
α′

+ δW', 

   (8-11) 

  H' = χS H0 + δH' = 0H
r
r ′

+ δH'. 

Eqs. (8-11) allow the imaging properties of a grating system with an entrance 
slit of finite area to be estimated quite well from the imaging properties of the 

H0' system 

Entrance Slit – without aberrations 

W0' 

H0 

W0 
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system in which an infinitesimally small object point is considered.  In effect, 
rays need only be traced from one point in the entrance slit (which determines 
δW' and δH'), from which the image dimensions for an extended entrance slit 
can be calculated using Eqs. (8-10).†   

 

 
Figure 8-7.  Entrance slit imaging (including aberrations).   Superimposing the point-
source images for the four corners of the entrance slit onto the (unaberrated) image of the 
entrance slit leads to the diagram above, showing that the rectangle in which the entire 
image lies has width W′ and height H′. 

8.2.3. Effects of the exit aperture dimensions 

 The linespread function for a spectral image, as defined above, depends on 
the width of the exit aperture as well as on the width of the diffracted image 
itself.  In determining the optimal width of the exit slit (or single detector 
element), a rule of thumb is that the width w" of the exit aperture should roughly 
match the width w' of the image of the entrance aperture, as explained below. 
 Typical linespread curves for the same diffracted image scanned by three 
different exit slit widths are shown in Figure 8-8.  For simplicity, we have 
assumed χT = 1 for these examples.  The horizontal axis is position along the 
image plane, in the plane of dispersion.  This axis can also be thought of as 
a wavelength axis (that is, in spectral units); the two axes are related via the 
dispersion.  The vertical axis is relative light intensity (or throughput) at the 

                                                           
† These equations fail to consider the effects of line curvature, so they must be regarded as 
approximate, though their accuracy should be acceptable for plane-symmetric grating systems (i.e., 
those whose entrance slit is centered in the dispersion plane) provided the entrance slit is not too tall 
(H0 << r). 

system 

Entrance Slit – with aberrations 
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W′ 

H0 

W0 



 

 118

image plane; its bottom and top represent no intensity and total intensity (or no 
rays entering the slit and all rays entering the slit), respectively.  Changing the 
horizontal coordinate represents scanning the monochromatic image by moving 
the exit slit across it, in the plane of dispersion.  This is approximately 
equivalent to changing the wavelength while keeping the exit slit fixed in space. 
 

 

(a)

(b)

(c)
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Figure 8-8.  Linespread curves for different exit slit widths.   The vertical axis is relative 
intensity at the exit aperture, and the horizontal axis is position along the image plane (in 
the plane of dispersion).  For a given curve, the dark horizontal line shows the FWHM 
(the width of that portion of the curve in which its amplitude exceeds its half maximum); 
the FWZH is the width of the entire curve. (a) w" < w'; (b) w" = w'; (c) w" > w'.  In (a) 
the peak is below unity.  In (a) and (b), the FWHM are approximately equal.  Severely 
aberrated images will yield linespread curves that differ from those above (in that they 
will be asymmetric), although their overall shape will be similar.  

 

 An exit slit that is narrower than the image (w" < w') will result in a 
linespread graph such as that seen in Figure 8-8(a).  In no position of the exit slit 
(or, for no diffracted wavelength) do all diffracted rays fall within the slit, as it 
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is not wide enough; the relative intensity does not reach its maximum value of 
unity. In (b), the exit slit width matches the width of the image: w" = w'.  
At exactly one point during the scan, all of the diffracted light is contained 
within the exit slit; this point is the peak (at a relative intensity of unity) of the 
curve.  In (c) the exit slit is wider than the image (w" > w').  The exit slit con-
tains the entire image for many positions of the exit slit. 
 In these figures the quantities FWZH and FWHM are shown.  These are 
abbreviations for full width at zero height and full width at half maximum.  The 
FWZH is simply the total extent of the linespread function, usually expressed in 
spectral units.  The FWHM is the spectral extent between the two extreme 
points on the linespread graph that are at half the maximum value.  The FWHM 
is often used as a quantitative measure of image quality in grating systems; it is 
often called the effective spectral bandwidth.  The FWZH is sometimes called 
the full spectral bandwidth.  It should be noted that the terminology is not 
universal among authors and sometimes quite confusing.  
 As the exit slit width w' is decreased, the effective bandwidth will generally 
decrease. If w' is roughly equal to the image width w, though, further reduction 
of the exit slit width will not reduce the bandwidth appreciably.  This can be 
seen in Figure 8-8, in which reducing w' from case (c) to case (b) results in a 
decrease in the FWHM, but further reduction of w' to case (a) does not reduce 
the FWHM. 
 The situation in w" < w' is undesirable in that diffracted energy is lost (the 
peak relative intensity is low) since the exit slit is too narrow to collect all of the 
diffracted light at once.  The situation w" > w' is also undesirable, since the 
FWHM is excessively large (or, similarly, an excessively wide band of 
wavelengths is accepted by the wide slit).  The situation w" = w' seems optimal: 
when the exit slit width matches the width of the spectral image, the relative 
intensity is maximized while the FWHM is minimized.  An interesting curve is 
shown in Figure 8-9, in which the ratio FWHM/FWZH is shown vs. the ratio 
w"/w' for a typical grating system.  This ratio reaches its single minimum near 
w" = w'. 
 The height of the exit aperture has a more subtle effect on the imaging 
properties of the spectrometer, since by 'height' we mean extent in the direction 
perpendicular to the plane of dispersion.  If the exit slit height is less than the 
height (sagittal extent) of the image, some diffracted light will be lost, as it will 
not pass through the aperture.  Since diffracted images generally display 
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Figure 8-9.   FWHM/FWZH vs. w"/w' for a typical system. 

 

w' w'*

exit slit 

 
  

Figure 8-10.  Effect of exit slit height on image width.  Both the width and the height of 
the image are reduced by the exit slit chosen.  Even if the width of the exit slit is greater 
than the width of the image, truncating the height of the image yields w'* < w'.  [Only the 
top half of each image is shown.]  
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curvature, truncating the sagittal extent of the image by choosing a short exit slit 
also reduces the width of the image (see Figure 8-10).  This latter effect is 
especially noticeable in Paschen-Runge mounts. 
 In this discussion we have ignored the diffraction effects of the grating 
aperture: the comments above consider only the effects of geometrical optics on 
instrumental imaging.  For cases in which the entrance and exit slits are equal in 
width, and this width is two or three times the diffraction limit, the linespread 
function is approximately Gaussian in shape rather than the triangle shown in 
Figure 8-8(b).  

8.3. INSTRUMENTAL BANDPASS 

 The instrumental bandpass of an optical spectrometer depends on both the 
dimensions of the image of the entrance slit and the exit slit dimensions.  
Ignoring the effects of the image height, the instrumental bandpass B is given by 

    B = P sup(w',w") (8-12) 

where P is the reciprocal linear dispersion (see Eq. (2-14’)), w' is the image 
width, w" is the width of the exit slit, and sup(w',w") is the greater of its 
arguments (i.e., the two-argument version of Eq. (7-25)): 

  
⎩
⎨
⎧

′′
′′>′′

=′′′
otherwise
if

),sup(
w

www
ww . (8-13) 

As P is usually expressed in nm/mm, the widths w' and w" must be expressed in 
millimeters to obtain the bandpass B in nanometers. 
 In cases where the image of the entrance slit is wider than the exit slit (that 
is, w' > w"), the instrumental bandpass is said to be imaging limited, whereas in 
those cases where the exit slit is wider than the image of the entrance slit 
(w' < w"), the instrumental bandpass is said to be slit limited.  [When an 
imaging-limited optical system is imaging limited due primarily to the grating, 
either because of the resolving power of the grating or due to its wavefront 
errors, the system is said to be grating limited.] 
 In the design of optical spectrometers, the widths of the entrance and exit 
slits are chosen by balancing spectral resolution (which improves as the slits 
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become narrower, to a limit) and optical throughput (which improves as the slits 
widen, up to a limit).  Ideally, the exit slit width is matched to the width of the 
image of the entrance slit (case (b) in Figure 8-8: w' = w") – this optimizes both 
resolution and throughput.  This optimum may only be achievable for one 
wavelength, the resolution of the other wavelengths generally being either slit-
limited or imaging-limited (with suboptimal throughput likely as well). 
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9. EFFICIENCY CHARACTERISTICS OF 
DIFFRACTION GRATINGS    

 

 

9.0. INTRODUCTION 

 Efficiency and its variation with wavelength and spectral order are impor-
tant characteristics of a diffraction grating.  For a reflection grating, efficiency is 
defined as the energy flow (power) of monochromatic light diffracted into the 
order being measured, relative either to the energy flow of the incident light 
(absolute efficiency) or to the energy flow of specular reflection from a polished 
mirror substrate coated with the same material (relative efficiency).  [Intensity 
may substitute for energy flow in these definitions.]  Efficiency is defined 
similarly for transmission gratings, except that an uncoated substrate is used in 
the measurement of relative efficiency. 
 High-efficiency gratings are desirable for several reasons.  A grating with 
high efficiency is more useful than one with lower efficiency in measuring weak 
transition lines in optical spectra.  A grating with high efficiency may allow the 
reflectivity and transmissivity specifications for the other components in the 
spectrometer to be relaxed.  Moreover, higher diffracted energy may imply 
lower instrumental stray light due to other diffracted orders, as the total energy 
flow for a given wavelength leaving the grating is conserved (being equal to the 
energy flow incident on it minus any scattering and absorption).   
 Control over the magnitude and variation of diffracted energy with 
wavelength is called blazing, and it involves the manipulation of the micro-
geometry of the grating grooves.  As early as 1874, Lord Rayleigh recognized 
that the energy flow distribution (by wavelength) of a diffraction grating could 
be altered by modifying the shape of the grating grooves.79  It was not until four 
decades later that R.W. Wood showed this to be true when he ruled a grating on 

                                                           
79 J. W. Strutt, Lord Rayleigh, “On the manufacture and theory of diffraction gratings,” Philos. Mag. 
47, 193-205 (1874). 
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which he had controlled the groove shape, thereby producing the first deliber-
ately blazed diffraction grating.80 
 The choice of an optimal efficiency curve for a grating depends on the 
specific application.   For some cases the desired instrumental response is linear 
with wavelength; that is, the ratio of intensity of light and the electronic signal 
into which it is transformed is to be nearly constant across the spectrum.  To 
approach this as closely as possible, the spectral emissivity of the light source 
and the spectral response of the detector should be considered, from which the 
desired grating efficiency curve can be derived.  Usually this requires peak 
grating efficiency in the region of the spectrum where the detectors are least 
sensitive; for example, a visible-light spectrometer using a silicon detector 
would be much less sensitive in the blue than in the red, suggesting that the grat-
ing itself be blazed to yield a peak efficiency in the blue. 
 A typical efficiency curve (a plot of absolute or relative diffracted efficiency 
vs. diffracted wavelength λ) is shown in Figure 9-1.  Usually such a curve 
shows  
 

  

λB

E P 

E 

λ
 

 

Figure 9-1.  A typical (simplified) efficiency curve.  This curve shows the efficiency E of 
a grating in a given spectral order m, measured vs. the diffracted wavelength λ.  The peak 
efficiency EP occurs at the blaze wavelength λB. 

                                                           

80 R. Wood, “The echellette grating for the infra-red,” Philos. Mag. 20 (series 6), 770-778 (1910). 
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a single maximum, at the peak wavelength (or blaze wavelength) λB.  This curve 
corresponds to a given diffraction order m; the peak of the curve decreases in 
magnitude and shifts toward shorter wavelengths as |m| increases.  The 
efficiency curve also depends on the angles of use (i.e., the angles of incidence 
and diffraction).  Moreover, the curve depends on the groove spacing d (more 
appropriately, on the dimensionless parameter λ/d) and the material with which 
the grating is coated (for reflection gratings) or made (for transmission 
gratings). 
 In many instances the diffracted power depends on the polarization of the 
incident light.  P-plane or TE polarized light is polarized parallel to the grating 
grooves, while S-plane or TM polarized light is polarized perpendicular to the 
grating grooves (see Figure 9-2).  For completely unpolarized incident light, the 
efficiency curve will be exactly halfway between the P and S efficiency curves.  
 

  

S
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P

P

grating

 
 

Figure 9-2.  S and P polarizations.  The P polarization components of the incident and 
diffracted beams are polarized parallel to the grating grooves; the S components are 
polarized perpendicular to the P components.  Both the S and P components are perpen-
dicular to the propagation directions. 
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 Usually light from a single spectral order m is used in a spectroscopic 
instrument, so a grating with ideal efficiency characteristics would diffract all of 
the power incident on it into this order (for the wavelength range considered).  
In practice, this is never true: the distribution of the power by the grating 
depends in a complicated way on the groove spacing and profile, the spectral or-
der, the wavelength, and the grating material.  
 Anomalies are locations on an efficiency curve (efficiency plotted vs. 
wavelength) at which the efficiency changes abruptly.  First observed by R. W. 
Wood, these sharp peaks and troughs in an efficiency curve are sometimes 
referred to as Wood's anomalies.  Anomalies are rarely observed in P polariza-
tion efficiency curves, but they are often seen in S polarization curves (see 
Figure 9-3).  Anomalies are discussed in more detail in Section 9.13. 
 

 

E 
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Figure 9-3.  Anomalies in the first order for a typical grating with triangular grooves.  
The P efficiency curve (solid line) is smooth, but anomalies are evident in the S curve 
(dashed line).  The passing-off locations are identified by their spectral order at the top of 
the figure. 
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9.1. GRATING EFFICIENCY AND GROOVE SHAPE 

 The maximum efficiency of a grating is typically obtained with a simple 
smooth triangular groove profile, as shown in Figure 9-4, when the groove (or 
blaze) angle θB is such that the specular reflection angle for the angle of inci-
dence is equal (in magnitude and opposite in sign) to the angle of diffraction 
(see Section 2.8).  Ideally, the groove facet should be flat with smooth straight 
edges, and be generally free from irregularities on a scale comparable to a small 
fraction (< 1/10) of the wavelength of light being diffracted. 

 Fraunhofer was well aware that the distribution of power among the various 
diffraction orders depended on the shape of the individual grating grooves.  
Wood, many decades later, was the first to achieve a degree of control over the 
groove shape, thereby concentrating spectral energy into one angular region.  
Wood's gratings were seen to light up, or blaze, when viewed at the correct 
angle. 
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Figure 9-4.  Triangular groove geometry.  The angles of incidence α and diffraction β 
are shown in relation to the facet angle θΒ.  GN is the grating normal and FN is the facet 
normal.  When the facet normal bisects the angle between the incident and diffracted 
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rays, the grating is used in the blaze condition.  The blaze arrow (shown) points from GN 
to FN. 

9.2. EFFICIENCY CHARACTERISTICS FOR TRIANGULAR-
GROOVE GRATINGS 

 Gratings with triangular grooves can be generated by mechanical ruling, or 
by blazing sinusoidal groove profiles by ion etching.  The efficiency behavior of 
gratings with triangular groove profiles may be divided into six families, de-
pending on the blaze angle:81 
 

 family blaze angle 

 very low blaze angle θB < 5°  
 low blaze angle 5° < θB < 10°  
 medium blaze angle 10° < θB < 18°  
 special low anomaly 18° < θB < 22°  
 high blaze angle 22° < θB < 38°  
 very high blaze angle θB  > 38°  

  

 Very low blaze angle gratings (θB < 5°) exhibit efficiency behavior that is 
almost perfectly scalar; that is, polarization effects are virtually nonexistent.  
In this region, a simple picture of blazing is applicable, in which each groove 
facet can be considered a simple flat mirror.  The diffracted efficiency is greatest 
for that wavelength that is diffracted by the grating in the same direction as it 
would be reflected by the facets.  This efficiency peak occurs in the m = 1 order 
at λ/d = 2 sinθ (provided the angle between the incident and diffracted beams is 
not excessive).  At λB/2, where λB is the blaze wavelength, the diffracted 
efficiency will be virtually zero (Figure 9-5) since for this wavelength the 
second-order efficiency will be at its peak.  Fifty-percent absolute efficiency is 
obtained from roughly 0.7λB to 1.8λB. 

                                                           
81 E. G. Loewen, M. Nevière and D. Maystre, “Grating efficiency theory as it applies to blazed and 
holographic gratings,” Appl. Opt. 16, 2711-2721 (1977). 
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Figure 9-5.  First-order theoretical efficiency curve: 2° blaze angle and Littrow 
mounting (2K = 0).  Solid curve, S-plane; dashed curve, P-plane. 

 

 For low blaze angle gratings (5° < θB < 10°), polarization effects will occur 
within their usable range (see Figure 9-6).  In particular, a strong anomaly is 
seen near λ/d = 2/3.  Also observed is the theoretical S-plane theoretical effi-
ciency peak of 100% exactly at the nominal blaze, combined with a P-plane 
peak that is lower and at a shorter wavelength.  It is characteristic of all P-plane 
curves to decrease monotonically from their peak toward zero as λ/d →  2, 
beyond which diffraction is not possible (see Eq. (2-1)).  Even though the 
wavelength band over which 50% efficiency is attained in unpolarized light is 
from 0.67λB to 1.8λB, gratings of this type (with 1200 groove per millimeter, 
for example) are widely used, because they most effectively cover the 
wavelength range between 200 and 800 nm (in which most ultraviolet-visible 
(UV-Vis) spectrophotometers operate). 



 

 130

 

 
Figure 9-6.  Same as Figure 9-5, except 9° blaze angle. 

 

 A typical efficiency curve for a medium blaze angle grating (10° < θB < 
18°) is shown in Figure 9-7.  As a reminder that for unpolarized light the 
efficiency is simply the arithmetic average of the S- and P-plane efficiencies, 
such a curve is shown in this figure only, to keep the other presentations simple. 
 The low-anomaly blaze angle region (18° < θB < 22°) is a special one.  
Due to the fact that the strong anomaly that corresponds to the –1 and +2 orders 
passing off (λ/d = 2/3) occurs just where these gratings have their peak 
efficiency, this anomaly ends up being severely suppressed (Figure 9-8).  
This property is quite well maintained over a large range of angular deviations 
(the angle between the incident and diffracted beams), namely up to 2K = 25°, 
but it depends on the grooves having an apex angle near 90°.  The relatively low 
P-plane efficiency of this family of blazed gratings holds the 50% efficiency 
band from 0.7λB to 1.9λB. 
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Figure 9-7.  Same as Figure 9-5, except 14° blaze angle.  The curve for unpolarized light 
(marked U) is also shown; it lies exactly halfway between the S and P curves. 

 

 
Figure 9-8.  Same as Figure 9-5, except 19° blaze angle. 
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 High blaze angle gratings (22° < θB < 38°) are widely used, despite the 
presence of a very strong anomaly in their efficiency curves (Figure 9-9).  For 
unpolarized light, the effect of this anomaly is greatly attenuated by its coinci-
dence with the P-plane peak.  Another method for reducing anomalies for such 
gratings is to use them at angular deviations 2K above 45°, although this in-
volves some sacrifice in efficiency and wavelength range.  The 50% efficiency 
is theoretically attainable in the Littrow configuration from 0.6λB to 2λB, but in 
practice the long-wavelength end corresponds to such an extreme angle of 
diffraction that instrumental difficulties arise. 
 

 

 
Figure 9-9.  Same as Figure 9-5, except 26° 45' blaze angle. 

  

 Theoretically, all gratings have a second high-efficiency peak in the S-plane 
at angles corresponding to the complement of the blaze angle (90°–θB); in 
practice, this peak is fully developed only on steeper groove-angle gratings, and 
then only when the steep face of the groove is not too badly deformed by the 
lateral plastic flow inherent in the diamond tool burnishing process.  The strong 
polarization observed at all high angles of diffraction limits the useable ef-
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ficiency in unpolarized light, but it makes such gratings very useful for tuning 
lasers, especially molecular lasers.  The groove spacing may be chosen so that 
the lasing band corresponds to either the first or second of the S-plane high-
efficiency plateaus.  The latter will give at least twice the dispersion (in fact the 
maximum possible), as it is proportional to the tangent of the angle of 
diffraction under the Littrow conditions typical of laser tuning. 
 Very-high blaze angle gratings (θB > 38°) are rarely used in the first order; 
their efficiency curves are interesting only because of the high P-plane values 
(Figure 9-10).  In high orders they are often used in tuning dye lasers, where 
high  
 

 

 
Figure 9-10.  Same as Figure 9-5, except 46° blaze angle and 8° and 45° between the 
incident and diffracted beams (shown as light and heavy lines, respectively). 

 

dispersion is important and where tuning through several orders can cover a 
wide spectral region with good efficiency.  Efficiency curves for this family of 
gratings are shown for two configurations.  With an angular deviation of 2K = 
8°, the efficiency does not differ too much from Littrow; when 2K = 45°, the 
deep groove results in sharp reductions in efficiency.  Some of the missing 
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energy shows up in the zeroth order, but some of it can be absorbed by the 
grating. 

9.3. EFFICIENCY CHARACTERISTICS FOR SINUSOIDAL-
GROOVE GRATINGS 

 A sinusoidal-groove grating can be obtained by the interferometric 
(holographic) recording techniques described in Chapter 4.  Sinusoidal gratings 
have a somewhat different diffracted efficiency behavior than do triangular-
groove gratings, and are treated separately.   
 It is convenient to consider five domains of sinusoidal-groove gratings, 82 
with progressively increasing modulation μ, where 

  μ = 
d
h , (9-1) 

h is the groove height and d is the groove spacing:  
 

 domain modulation 

 very low μ  < 0.05  

 low 0.05 < μ < 0.15  

 medium 0.15 < μ < 0.25  

 high 0.25 < μ < 0.4  

 very high μ > 0.4  
 

 Very low modulation gratings (μ < 0.05) operate in the scalar domain,83 
where the theoretical efficiency peak for sinusoidal grooves is only 34% (Figure 
9-11).  This figure may be readily scaled, and specification is a simple matter as 
soon as it becomes clear that the peak wavelength always occurs at λB = 3.4h = 

                                                           
82 E. G. Loewen, M. Nevière and D. Maystre, "Grating efficiency theory as it applies to blazed and 
holographic gratings," Appl. Opt. 16, 2711-2721 (1977). 
83 E. G. Loewen, M. Nevière and D. Maystre, "On an asymptotic theory of diffraction gratings used 
in the scalar domain," J. Opt. Soc. Am. 68, 496-502 (1978). 
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3.4μd.  A blazed grating with an equivalent peak wavelength will require 
a groove depth 1.7 times greater. 
 Low modulation gratings (0.05 < μ < 0.15) are quite useful in that they have 
a low but rather flat efficiency over the range 0.35 < λ/d < 1.4 (Figure 9-12).  
This figure includes not only the infinite conductivity values shown on all previ-
ous ones, but includes the effects of finite conductivity by adding the curves for 
an 1800 g/mm aluminum surface.  The most significant effect is in the behavior 
of the anomaly, which is the typical result of the finite conductivity of real 
metals. 
 

 

 
Figure 9-11.  First-order theoretical efficiency curve: sinusoidal grating, µ = 0.05 and 
Littrow mounting (2K = 0).  Solid curve, S-plane; dashed curve, P-plane. 

 

 Figure 9-13 is a good example of a medium modulation grating (0.15 < μ < 
0.25). It demonstrates an important aspect of such sinusoidal gratings, namely 
that reasonable efficiency requirements confine first-order applications to values 
of λ/d > 0.45, which makes them generally unsuitable for systems covering 
wide spectral ranges.   
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Figure 9-12.  First-order theoretical efficiency curve: sinusoidal grating, aluminum 
coating, 1800 grooves per millimeter, µ = 0.14 and Littrow mounting.  Solid curves, S-
plane; dashed curves, P-plane.  For reference, the curves for a perfectly conducting 
surface are shown as well (light curves). 

 

 
Figure 9-13.  Same as Figure 9-12, except µ = 0.22 and 8° between incident and 
diffracted beams (2K = 8°). 
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Over this restricted region, however, efficiencies are comparable to those of tri-
angular-groove gratings, including the high degree of polarization.  This figure 
also demonstrates how a departure from Littrow to an angular deviation of 2K = 
8° splits the anomaly into two branches, corresponding to the new locations of 
the –1 and +2 order passing-off conditions. 
 High modulation gratings (0.25 < μ < 0.40), such as shown in Figure 9-14, 
have the maximum useful first-order efficiencies of sinusoidal-groove gratings.  
Provided they are restricted to the domain in which higher orders diffract (i.e., 
λ/d > 0.65), their efficiencies are very similar to those of triangular-groove grat-
ings having similar groove depths (i.e., 26° < θB < 35°). 
 

 

 
Figure 9-14.  Same as Figure 9-12, except µ = 0.36. 

  

 Very-high modulation gratings (μ > 0.40), in common with equivalent 
triangular-groove gratings, have little application in the first order due to their 
relatively low efficiencies except perhaps over narrow wavelengths ranges and 
for grazing incidence applications. 
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9.4. THE EFFECTS OF FINITE CONDUCTIVITY 

 For metal-coated reflection gratings, the finite conductivity of the metal is 
of little importance for wavelengths of diffraction above 4 µm, but the complex 
nature of the dielectric constant and the index of refraction begin to effect effi-
ciency behavior noticeably for wavelengths below 1 µm, and progressively 
more so as the wavelength decreases.  In the P-plane, the effect is a simple 
reduction in efficiency, in direct proportion to the reflectance.  In the S-plane, 
the effect is more complicated, especially for deeper grooves and shorter 
wavelengths. 
 Figure 9-15 shows the first-order efficiency curve for a widely-used 
grating: 1200 g/mm, triangular grooves, medium blaze angle (θB = 10°), coated 
with 
 

 

 
Figure 9-15.  First-order theoretical efficiency curve: triangular-groove grating, 
aluminum coating, 1200 grooves per millimeter, 10° blaze angle and 2K = 8°.  Solid 
curves, S-plane; dashed curves, P-plane.  For reference, the curves for a perfectly 
conducting surface are shown as well (light curves). 

 



 

 139

aluminum and used with an angular deviation of 8°.  The finite conductivity of 
the metal causes a reduction in efficiency; also, severe modification of the 
anomaly is apparent.  It is typical that the anomaly is broadened and shifted 
toward a longer wavelength compared with the infinite conductivity curve.  
Even for an angular deviation as small as 8°, the single anomaly in the figure is 
separated into a double anomaly. 
 For sinusoidal gratings, the situation is shown in Figures 9-12 and 9-14.  
Figure 9-13 is interesting in that it clearly shows a series of new anomalies that 
are traceable to the role of aluminum. 
 With scalar domain gratings (either θB < 5° or μ < 0.10), the role of finite 
conductivity is generally (but not always) to reduce the efficiency by the ratio of 
surface reflectance.84 

9.5. DISTRIBUTION OF ENERGY BY DIFFRACTION ORDER 

 Gratings are most often used in higher diffraction orders to extend the 
spectral range of a single grating to shorter wavelengths than can be covered in 
lower orders.  For blazed gratings, the second-order peak will be at one-half the 
wavelength of the nominal first-order peak, the third-order peak at one-third, 
etc.  Since the ratio λ/d will be progressively smaller as |m| increases, polar-
ization effects will become less significant; anomalies are usually negligible in 
diffraction orders for which |m| > 2.  Figures 9-16 and 9-17 show the second- 
and third-order theoretical Littrow efficiencies, respectively, for a blazed grating 
with θB = 26°45'; they are plotted as a function of mλ/d in order to demonstrate 
the proper angular ranges of use.  These curves should be compared with Figure 
9-9 for corresponding first-order behavior. 
 For gratings with sinusoidally shaped grooves, higher orders can also be 
used, but if efficiency is important, the choice is likely to be a finer pitch first-
order grating instead.  When groove modulations are very low (so that the 
grating is used in the scalar domain), the second-order efficiency curve looks 
similar to Figure 9-18, except that the theoretical peak value is about 23% 
(instead of 34%) and occurs at a wavelength 0.6 times that of the first-order 
peak, which corresponds to 2.05h (instead of 3.41h), where h is the groove 

                                                           
84 E. G. Loewen, M. Nevière and D. Maystre, "On an asymptotic theory of diffraction gratings used 
in the scalar domain," J. Opt. Soc. Am. 68, 496-502 (1978). 
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depth.  Successive higher-order curves for gratings with sinusoidal grooves are 
not only closer together,  but drop off  more sharply with order  than for gratings 

 

 
Figure 9-16.  Second-order theoretical efficiency curve: 26° 45' blaze angle and Littrow 
mounting.  Solid curve, S-plane; dashed curve, P-plane. 
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Figure 9-17.  Same as Figure 9-16, except third order. 

 

 
Figure 9-18.  Second-order theoretical efficiency curve: sinusoidal grating, µ = 0.36 and 
Littrow mounting.  Solid curve, S-plane; dashed curve, P-plane. 
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Figure 9-19.  Same as Figure 9-18, except third order. 

 
with triangular grooves.  For sufficiently deeply modulated sinusoidal grooves, 
the second order can often be used effectively, though (as Figure 9-18 shows) 
polarization effects are relatively strong.  The corresponding third-order theo-
retical curve is shown in Figure 9-19. 

9.6. USEFUL WAVELENGTH RANGE 

 The laws governing diffracted efficiency are quite complicated, but a very 
rough rule of thumb can be used to estimate the useful range of wavelengths 
available on either side of the blaze (peak) wavelength λB for triangular-groove 
gratings.   
 For coarse gratings (for which d ≥ 2λ), the efficiency in the first diffraction 
order is roughly half its maximum (which is at λB) at 2λB/3 and 3λB/2.  Curves 
of similar shape are obtained in the second and third orders, but the efficiencies 
are typically 20% less everywhere, as compared with the first order. 
 Grating of fine pitch (d ≈ λ) have a somewhat lower peak efficiency than do 
coarse gratings, though the useful wavelength range is greater. 
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9.7. BLAZING OF RULED TRANSMISSION GRATINGS 

 Because they have no metallic overcoating, triangular-groove transmission 
gratings display far simpler efficiency characteristics than do their ruled 
counterparts.  In particular, transmission gratings have efficiency curves almost 
completely free of polarization effects. 
 The peak wavelength generally occurs when the direction of refraction of 
the incident beam through a groove (thought of as a small prism) equals the 
direction dictated by the grating equation.  [This is in direct analogy with the 
model of reflection grating blazing in that the grooves are thought of as tiny 
mirrors; see Section 2.8.]  Due to the index of refraction of the grating, though, 
the groove angle exceeds the blaze angle for a transmission grating. 
 See Section 12.2 for more information on transmission gratings. 

9.8. BLAZING OF HOLOGRAPHIC REFLECTION GRATINGS 

 Although holographic gratings generally do not have the triangular groove 
profile found in ruled gratings, holographic gratings may still exhibit blazing 
characteristics (see, for example, Figure 9-18).    For this reason it is not correct 
to say that all blazed gratings have triangular profiles, or that all blazed gratings 
are ruled gratings – blazing refers to high diffraction efficiency, regardless of 
the profile of the grooves or the method used to generate them. 
 This being said, there are some cases in which it would be preferable for a 
holographic grating to have a triangular groove profile rather than a sinusoidal 
profile.  The method of using standing waves to record the grooves (see Section 
4.2.1) was developed by Sheridon85 and improved by Hutley.86  
 Another useful technique for rendering sinusoidal groove profiles more 
nearly triangular is ion etching.  By bombarding a surface with energetic ions, 
the material can be removed (etched) by an amount per unit time dependent on 
the angle between the beam and the local surface normal.  The etching of a 
sinusoidal profile by an ion beam provides a continuously varying angle 
between the ion beam and the surface normal, which preferentially removes 
                                                           
85 N. K. Sheridon, “Production of blazed holograms,” Appl. Phys. Lett. 12, 316-318 (1968). 
86 M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1-13 
(1975);  M. C. Hutley and W. R. Hunter, “Variation of blaze of concave diffraction gratings,” Appl. 
Opt. 20, 245-250 (1981). 



 

 144

material at some parts of the profile while leaving other parts hardly etched.  
The surface evolves toward a triangular groove profile as the ions bombard it.87 

 Other method for generating blazed groove profiles have been developed,88 
but the Sheridon method and the method of ion etching are those most 
commonly used for commercially-available gratings. 

9.9. OVERCOATING OF REFLECTION GRATINGS 

 The metallic coating on a reflection grating is evaporated onto the substrate.  
This produces a surface whose reflectivity is higher than that of the same metal 
electroplated onto the grating surface.  The thickness of the metallic layer is 
chosen to enhance the diffraction efficiency throughout the spectral region of 
interest. 
 Most standard reflection gratings are furnished with an aluminum (Al) 
reflecting surface.  While no other metal has more general application, there are 
a number of special situations where alternative surfaces or coatings are recom-
mended.  Gratings coated with gold (Au) and silver (Ag) have been used for 
some time for higher reflectivity in certain spectral regions, as have more exotic 
materials such as iridium (Ir), osmium (Os) and platinum (Pt).89 
 The reflectivity of aluminum drops rather sharply for wavelengths below 
170 nm.  While freshly deposited, fast-fired pure aluminum in high vacuum 
maintains its reflectivity to wavelengths shorter than 100 nm, the thin layer of 
oxide that grows on the aluminum (upon introduction of the coating to 
atmosphere) will cause a reduction in efficiency below about 250 nm.90  
Fortunately, a method borrowed from mirror technology makes it possible to 

                                                           
87 Y. Aoyagi and S. Namba, Japan. J. Appl. Phys. 15, 721 (1976);  L. F. Johnson, “Evolution of 
grating profiles under ion-beam erosion,” Appl. Opt. 18, 2559-2574 (1979);  C. Palmer, J. Olson and 
M. M. Dunn, “Blazed diffraction gratings obtained by ion-milling sinusoidal photoresist gratings,” 
Proc. SPIE 2622, 112-121 (1995). 
88 M. B. Fleming and M. C. Hutley, “Blazed diffractive optics,” Appl. Opt. 36, 4635-4643 (1997). 
89 E.g., J. M. Bennett and E. J. Ashley, “Infrared reflectance and emittance of silver and 
goldevaporated in ultrahigh vacuum,” Appl. Opt. 4, 221-224 (1965);  R. F. Malina and W. Cash, 
“Extreme ultraviolet reflection efficiencies of diamond-turned aluminum, polished nickel, and 
evaporated gold surfaces,” Appl. Opt. 17, 3309-3313 (1978);   M. R. Torr, “Osmium coated 
diffraction grating in the Space Shuttle environment: performance,” Appl. Opt. 24, 2959-2961 
(1985). 
90 R. P. Madden, L. R. Canfield and G. Hass, “On the vacuum-ultraviolet reflectance of evaporated 
aluminum before and during oxidation,” J. Opt. Soc. Am. 53, 620-625 (1963). 
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preserve the reflectivity of aluminum to shorter wavelengths.91  The process 
involves overcoating the grating with a thin layer of fast-fired aluminum, which 
is followed immediately by a coating of magnesium fluoride (MgF2) 
approximately 25 nm thick.  The main purpose of the MgF2 coating is to protect 
the aluminum from oxidation.  The advantage of this coating is especially 
marked in the region between 120 and 200 nm.  While reflectivity drops off 
sharply below this region, it remains higher than that of gold and comparable to 
that of platinum, the most commonly used alternative materials, down to 70 nm. 
 Overcoating gratings so that their surfaces are coated with two layers of 
different metals sometimes leads to a change in diffraction efficiency over time.  
Hunter et al.92 have found the cause of this change to be intermetallic diffusion.  
For example, they measured a drastic decrease (over time) in efficiency at 
122 nm for gratings coated in Au and then overcoated in Al + MgF2; this 
decrease was attributed to the formation of intermetallic compounds, primarily 
AuAl2 and Au2Al.  Placing a suitable dielectric layer such as SiO between the 
two metallic layers prevents this diffusion. 
 As mentioned elsewhere, fingerprints are a danger to aluminized optics.  It 
is possible to overcoat such optics, both gratings and mirrors, with dielectrics 
like MgF2, to prevent finger acids from attacking the aluminum.  These MgF2 
coatings cannot be baked, as is customary for glass optics, and therefore must 
not be cleaned with water.  Spectrographic-grade organic solvents are the only 
recommended cleaning agents, and they should be used sparingly and with care.  
 Single-layer and multilayer dielectric overcoatings, which are so useful in 
enhancing plane mirror surfaces, are less generally applicable to diffraction 
gratings, since in certain circumstances these coatings lead to complex guided 
wave effects.93  For wavelengths below 30 nm, in which grazing angles of 
incidence and diffraction are common, multilayer coatings can enhance 
efficiency considerably.94 

                                                           
91 G. Hass and R. Tousey, “Reflecting coatings for the extreme ultraviolet,” J. Opt. Soc. Am. 49, 
593-602 (1959). 
92 W. R. Hunter, T. L. Mikes and G. Hass, "Deterioration of Reflecting Coatings by Intermetallic 
Diffusion," Appl. Opt. 11, 1594-1597 (1972). 
93 M. C. Hutley, J. F. Verrill and R. C. McPhedran, “The effect of a dielectric layer on the 
diffraction anomalies of an optical grating,” Opt. Commun 11, 207-209 (1974). 
94 J. C. Rife, W. R. Hunter, T. W. Barbee, Jr., and R. G. Cruddace, "Multilayer-coated blazed grating 
performance in the soft x-ray region," Appl. Opt. 28, 1984 (1989). 
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9.11. THE RECIPROCITY THEOREM   

 A useful property of grating efficiency is that embodied in the reciprocity 
theorem,95 which states that (under certain conditions) reversing the direction of 
the beam diffracted by a grating will leave its diffraction efficiency unchanged.  
Stated another way, the reciprocity theorem says that the grating efficiency for 
wavelength λ in order m is unchanged under the transformation α ↔ β.  This 
equivalence follows from the periodic nature of the grating, and is strictly true 
for perfectly-conducting gratings and lossless dielectric gratings illuminated by 
an incident plane wave.96    
 Three consequences of the reciprocity theorem should be noted:97 

• The zeroth-order efficiency E(λ,0) is a symmetric function (of angle α) 
about α = 0. 

• Rotation of the grating groove profile through 180° (while keeping α 
constant) does not effect E(λ,0); moreover, if only two diffraction 
orders are propagating (say, m = 0 and m = 1), the efficiency E(λ,1) 
will be unchanged as well. 

• The efficiency E(λ,m) for a given diffraction order m is a symmetric 
function of vs. sinα about the Littrow condition (α = β).98 

9.12. CONSERVATION OF ENERGY 

 The principle of conservation of energy requires that all of the energy 
incident on a diffraction grating be accounted for; this can be represented 
mathematically (in terms of intensities), considering a single wavelength λ, as 

  Iin = Iout = ∑
m

Idiff(m) + Iabsorbed + Iscattered ,         (for a single λ) (9-2) 

                                                           
95 R. Petit, “A tutorial introduction," in Electromagnetic Theory of Gratings, R. Petit, ed. (Springer-
Verlag, New York, 1980), p. 12. 
96 E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 
1997), p. 38. 
97 R. C. McPhedran and M. D. Waterworth, “A theoretical demonstration of properties of grating 
anomalies (S-polarization),” Opt. Acta 19, 877-892 (1972). 
98 E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 
1997), p. 38.. 
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where the summation is over all diffraction orders m that propagate (i.e., for a 
reflection grating, all orders for which the diffraction angle β(m) satisfies the 
inequalities –90º ≤ β(m) ≤ +90º).   Here the terms Iabsorbed and Iscattered are the 
“losses” due to absorption of energy by the grating and by scattering, 
respectively. 
 It is important to recognize that Eq. (9-2) holds only for the case in which 
the grating and the incident beam are fixed in space, and each diffraction order 
is diffracted through a unique diffraction angle given by Eq. (2-4) with constant 
α.   Eq. (9-2) does not hold true when the intensity of each diffraction order m is 
measured in the Littrow configuration, since in this case the incidence angle α is 
changed for each order.  Care must be taken when adding intensities (or 
efficiencies) in several orders for a single wavelength: the sum of these 
intensities is not conserved according to Eq. (9-2) unless the grating and 
incident beam remain fixed while a detector is moved (in angle) from one order 
to the next to take the intensity measurements.   
 Eq. (9-2) can be used to advantage by designing an optical system for 
which only two diffraction orders propagate: order m = 1 (or m = –1) and order 
m = 0 (which always exists: |α| < 90º  implies |β(0)| < 90º, since β(0) = –α).  
This case requires a small groove spacing d and an incidence angle α such that 
the diffraction angle for m = ±2 and for the other first order pass beyond 90º: 
from Eq. (2-1) this requires 

  |sinβ| = αλ sin−
d

m  > 1 (9-3) 

for m = 2, m = –2 and m = –1 (assuming that m = 1 is the order chosen to 
propagate).   For such a system, Eq. (9-2) simplifies to become 

  Iin = Iout = Idiff(0) + Idiff(1)  + Iabsorbed + Iscattered ,    (for a single λ) (9-4) 

where the term Idiff(0) corresponds to the reflected intensity and Idiff(1) 
corresponds to the intensity diffracted into the m = 1 order.   Choosing a groove 
profile that reduces the reflected intensity Idiff(0) will thereby increase the 
diffracted intensity Idiff(1). 
 Eq. (9-2) is generally useful in measuring grating efficiency, but in the 
presence of anomalies (see below) they can lead to considerable inaccuracies. 
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9.13. GRATING ANOMALIES   

 In 1902. R. W. Wood observed that the intensity of light diffracted by a 
grating generally changed slowly as the wavelength was varied, but occasionally 
a sharp change in intensity was observed at certain wavelengths.99   Called 
anomalies, these abrupt changes in the grating efficiency curve were later 
categorized into two groups: Rayleigh anomalies and resonance anomalies. 100    

9.13.1. Rayleigh anomalies  

 Lord Rayleigh predicted the spectral locations where a certain set of 
anomalies would be found: he suggested that these anomalies occur when light 
of a given wavelength λ' and spectral order m' is diffracted at |β| = 90° from the 
grating normal (i.e., it becomes an evanescent wave, passing over the grating 
horizon).  For wavelengths λ < λ', |β| < 90°, so propagation is possible in order 
m' (and all lower orders), but for λ > λ' no propagation is possible in order m' 
(but it is still possible in lower orders).  Thus there is a discontinuity in the 
diffracted power vs. wavelength in order m' at wavelength λ, and the power that 
would diffract into this order for λ > λ' is redistributed among the other 
propagating orders.  This causes abrupt changes in the power diffracted into 
these other orders.   
 These Rayleigh anomalies, which arise from the abrupt redistribution of 
energy when a diffracted order changes from propagating (|β| < 90°) to 
evanescent (|β| > 90°), or vice versa, are also called threshold anomalies.101   

                                                           
99 R. W. Wood, “On the remarkable case of uneven distribution of light in a diffraction grating 
spectrum,” Philos. Mag. 4, 396-402 (1902);  R. W. Wood, “Anomalous diffraction gratings,” Phys. 
Rev. 48, 928-936 (1935);  J. E. Stewart and W. S. Gallaway, “Diffraction anomalies in grating 
spectrophotometers,” Appl. Opt. 1, 421-430 (1962). 
100 A. Hessel and A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 
4, 1275-1297 (1965). 
101 E. G. Loewen and E. Popov, Diffraction Gratings and Applications (Marcel Dekker, New York, 
1997), ch. 8. 
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9.13.2. Resonance anomalies  

 The second class of anomalies, which are usually much more noticeable 
than Rayleigh anomalies, are caused by resonance phenomena,102 the most well-
known of which are surface excitation effects.103  At the interface between 
a dielectric and a metal, there are specific conditions under which a charge 
density oscillation (“electron wave”) can be supported, which carries light 
intensity away from the incident beam and therefore decreases the diffraction 
efficiency of the grating.   The efficiency curve would show a sharp drop in 
intensity at the corresponding conditions (see Figure 9-20). 
 

  

 E 

λ
 

 

Figure 9-20.  A typical (simplified) efficiency curve showing a sharp drop where the 
conditions are met for surface plasmon resonance.  A narrow spectral region is shown; 
the efficiency curve would appear to increase monotonically if the resonance condition 
were not met. 

 For a resonance anomaly to exist, a resonance condition must be met – this 
places restrictions on the wavelengths (and incidence angles) that will exhibit 
resonance effects for a given groove profile and refractive indices.  This results 
from the fact that in this phenomenon – the surface plasmon resonance (SPR) 

                                                           
102 U. Fano, “The theory of anomalous diffraction gratings and of quasi-stationary waves on 
metallic surfaces (Sommerfeld’s waves),” J. Opt. Soc. Am. 31, 213-222 (1941). 
103 R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, “Surface-plasmon resonance effect 
in grating diffraction,” Phys. Rev. Lett. 21, 1530-1533 (1968). 
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effect104 – the electromagnetic field that propagates along the metal-dielectric 
interface extends into each medium, so the characteristics of this propagating 
wave depend on the material conditions near the interface.  This useful feature 
of SPR has led to its use in a number of sensing applications,105 such as 
biosensing106 and gas sensing.107  SPR can also be used to characterize the 
surface profile of the grating itself, especially by probing the diffraction effects 
due to higher harmonics in the periodic structure on the surface of the grating.108 
 While diffraction gratings generally do not convert incident P-polarized 
light to S-polarized light (or vice versa) upon diffraction, it has recently been 
observed that such polarization conversion can occur if the grating is not 
illuminated in the principal plane (i.e., ε ≠ 0 in Eq. (2-3)).109  In this case, called 
conical diffraction (see Section 2.1), resonance effects can lead to a strong 
polarization conversion peak (e.g., a sharp trough in the S-polarized efficiency 
curve coincident with a sharp peak in the P-polarized efficiency curve). 

9.14. GRATING EFFICIENCY CALCULATIONS   

 Several techniques have been developed to calculate grating efficiencies, 
most of which have two characteristics in common: they employ Maxwell’s 
equations whose boundary conditions are applied at the corrugated grating 
surface, and their difficulty in implementation varies in rough proportion to their 

                                                           
104 R. H. Ritchie, E. T. Arakawa, J. J. Cowan and R. N. Hamm, “Surface-plasmon resonance effect 
in grating diffraction,” Phys. Rev. Lett. 21, 1530-1533 (1968). 
105 J. Homola, S. S. Yee and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors 
and Actuators B 54, 3-15 (1999);  
106 F. Caruso, M. J. Jory, G. W. Bradberry, J. R. Sambles and D. N. Furlong, “Acousto-optic 
surface-plasmon-resonance measurements of thin films on gold,” J. Appl. Phys. 83, 5 (1983);  D. C. 
Cullen, R. G. W. Brown and R. C. Lowe, “Detection of immunocomplex formation via surface 
plasmon resonance on gold-coated diffraction gratings,” Biosensors 3, 211 (1987);  J. M. Brockman 
and S. M. Fernández, “Grating-coupled surface plasmon resonance for rapid, label-free, array-based 
sensing,” American Laboratory, 37-40 (June 2001). 
107 M. J. Jory, P. S. Cann and J. R. Sambles, “Surface-plasmon-polariton studies of 18-crown-6 
metal-free phthalocyanide,” J. Phys. D: Appl. Phys., 27, 169-174 (1994) 
108 E. L. Wood, J. R. Sambles, N. P. Cotter and S. C. Kitson, “Diffraction grating characterization 
using multiple-wavelength excitation of surface plasmon polaritons,” J. Mod. Opt. 42, 1343-1349 
(1995). 
109 G. P. Bryan-Brown, J. R. Sambles and M. C. Hutley, “Polarisation conversion through the 
excitation of surface plasmons on a metallic grating”, J. Mod. Opt. 37, 1227-1232 (1990);  S. J. 
Elston, G. P. Bryan-Brown and J. R. Sambles, “Polarization conversion from diffraction gratings,” 
Phys. Rev. B 44, 6393-6400 (1991). 
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accuracy.  In this section only a brief mention of these techniques is provided – 
more details may be found in Petit110, Maystre111, and Loewen and Popov112. 
 Grating efficiency calculations start with a description of the physical 
situation: an electromagnetic wave is incident upon a corrugated surface, the 
periodicity of which allows for a multiplicity of diffracted waves (each in 
a different direction, corresponding to a unique diffraction order as described in 
Chapter 2).  Efficiency calculations seek to determine the distribution of the 
incident energy into each of the diffraction orders. 
 Scalar theories of grating efficiency lead to accurate results in certain cases, 
such as when the wavelength is much smaller than the groove spacing (d << λ); 
the vectorial nature of optical radiation (manifest in the property of polarization) 
is not taken into account in this formalism. 
 Vector or electromagnetic theories can be grouped into two categories.  
Differential methods start from the differential form of Maxwell’s equations for 
TE (P) and TM (S) polarization states, whereas integral methods start from the 
integral form of these equations.  Each of these categories contains a number of 
methods, none of which is claimed to cover all circumstances. 
 Both differential and integral methods have been developed and studied 
extensively, and both have been implemented numerically and thoroughly tested 
against a wide variety of experimental data.  Some of these numerical 
implementations are commercially available. 

                                                           
110 Petit, R., ed., Electromagnetic Theory of Gratings, vol. 22 in “Topics in Current Physics” series 
(Springer-Verlag, 1980). 
111 D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, vol. XXI, 
E. Wolf, ed. (Elsevier, 1984), pp. 2-67. 
112 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (New 
York, 1987), ch. 10. 
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1100..  STRAY LIGHT CHARACTERISTICS OF 
GRATINGS AND GRATING SYSTEMS     

 

     

10.0. INTRODUCTION 

 An annoying characteristic of all optical surfaces is their ability to scatter 
light.   This undesirable light is often referred to as stray radiant energy (SRE).  
When this light reaches the detector of an instrument designed to measure 
an optical signal, the SRE contributes to the noise of the system and thereby 
reduces the signal-to-noise ratio (SNR). 
 The terminology of SRE in grating systems is not standard, so for clarity we 
refer to unwanted light arising from imperfections in the grating itself as 
scattered light or grating scatter, and unwanted light reaching the detector of a 
grating-based instrument as instrumental stray light or simply stray light.  [We 
choose this definition of scattered light so that it will vanish for a perfect 
grating; we will see below that this does not generally cause the instrumental 
stray light to vanish as well.]  With these definitions, some scattered light will 
also be stray light (if it reaches the detector); moreover, some stray light will not 
be scattered light (since it will not have arisen from imperfections in the 
grating).113 

                                                           
113 This definition of stray light is not universal; while it is in agreement with K. D. Mielenz, V. R. 
Weidner and R. W. Burke, “Heterochromic stray light in UV absorption spectrometry: a new test 
method,” Appl. Opt. 21, 3354-3356 (1982), it is not in agreement with the ASTM, which defines the 
quantity stray radiant power as being composed of wavelengths outside the spectral bandwidth of 
the monochromator (ASTM standard E387, “Standard Test Method for Estimating Stray Radiant 
Power Ratio of Dispersive Spectrophotometers by the Opaque Filter Method,” 2004).  [See also W. 
Kaye, “Stray light ratio measurements,” Anal. Chem. 53, 2201-2206 (1981).]  The ASTM definition 
does not account for light of the correct wavelength that reaches the detector, but which does not 
follow the desired optical path. 
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10.1. GRATING SCATTER 

 Of the radiation incident on the surface of a reflection grating, some will be 
diffracted according to Eq. (2-1) and some will be absorbed by the grating itself.  
The remainder is scattered light, which may arise from several factors, including 
imperfections in the shape and spacing of the grooves and roughness on the 
surface of the grating.  An excellent analysis of grating scatter can be found in 
Sharpe & Irish,114 and measured grating scatter was compared to predictions of 
Beckmann’s scalar theory and Rayleigh’s vector theory by Marx et al.115 
 Two types of scattered light are often distinguished.  Diffuse scattered light 
is scattered into the hemisphere in front of the grating surface.  It is due mainly 
to grating surface microroughness.  It is the primary cause of scattered light in 
holographic gratings.  For monochromatic light of wavelength λ incident on a 
grating, the intensity of diffuse scattered light is higher near the diffraction 
orders of λ than between these orders.†  In-plane scatter is unwanted energy in 
the dispersion plane.  Due primarily to random variations in groove spacing or 
groove depth, its intensity is generally higher than the background diffuse 
scattered light. 
 Consider a diffraction grating consisting of a pattern of grooves whose 
nominal spacing is d.  We have defined scattered light as all light leaving the 
grating due to its imperfections; this is equivalent to the operational definition 
that scattered light is all light energy leaving the surface of a diffraction grating 
that does not follow the grating equation for the nominal groove spacing d, 

  ( )βαλ sinsin += dm . (2-1) 

This is analogous to the concept of scattered light for a mirror, which may be 
defined the light leaving its surface that does not follow the law of reflection for 
the nominal mirror surface. 
 This definition of grating scatter – as being caused by imperfections in the 
grating – does not consider light diffracted into different orders {m} as scattered 

                                                           
114 M. R. Sharpe and D. Irish, “Stray light in diffraction grating monochromators,” Opt. Acta 25, 
861-893 (1978). 
115 E. Marx, T. A. Germer, T. V. Vorburger and B. C. Park, “Angular distribution of light scattered 
from a sinusoidal grating,” Appl. Opt. 39, 4473-4485 (2000). 
† This observation has lead some to observe that grating scatter is “blazed”. 
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light.  That is, diffraction into multiple orders is not an artifact of grating 
imperfections, but a direct consequence of the phenomenon of constructive 
interference on which the grating operates (see Section 2.1).  However, light 
diffracted into other orders can contribute to instrumental stray light (see 
Section 10.2 below). 

10.1.1. Surface irregularities in the grating coating 

 A grating surface that is rough on the scale of the incident wavelength (or 
somewhat smaller) will cause a small portion of the incident light to be scattered 
diffusely (i.e., into all directions) with intensity that varies approximately with 
the inverse fourth power of the wavelength.116  Surface roughness is due in part 
to the surface quality of the master grating, either ruled or holographic, since the 
metal coating of a ruled master, and the photoresist coating of a holographic 
master, are not perfectly smooth.  Moreover, the addition of a reflective coating 
may contribute to the surface roughness due to the coating’s granular structure. 

10.1.2. Dust, scratches & pinholes on the surface of the grating   

 Each speck of dust, tiny scratch, and pinhole void in the surface of 
a reflection grating will serve as a “scatter center” and cause diffuse scatter.  
This is evident upon inspecting a grating under a bright light: dust, scratches, 
pinholes etc. are easily visible and bright when looked at from many different 
angles (hence the diffuse nature of their scattered light). 

10.1.3. Irregularities in the position of the grooves 

 The presence of spatial frequencies in the groove pattern other than that of 
the groove spacing d will give rise to constructive interference of the diffracted 
light at angles that do not follow the grating equation for the nominal groove 
spacing d, but for different spacings d’ ≠ d. 
 Until the recent advent of interferometric control of ruling engines, 
mechanically ruled gratings exhibited secondary spectra, called ghosts, due to 
                                                           
116 M. R. Sharpe and D. Irish, "Stray light in diffraction grating monochromators," Opt. Acta 25, 
861-893 (1978). 
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slight deviations in the placement of its grooves compared with their ideal 
locations.  Ghosts that are close to and symmetric about the parent diffracted 
line are called Rowland ghosts, and are due to longer-term periodicities (on the 
order of millimeters), whereas Lyman ghosts are farther from the parent line and 
are caused by short-term periodicities (on the order of the groove spacing).  
Both Rowland and Lyman ghosts appear at angular positions given by the 
grating equation, but for spatial frequencies other than 1/d (see Section 11.1). 
 The presence of random (rather than periodic) irregularities in groove 
placement leads to a faint background between orders, rather than sharp ghosts, 
whose intensity varies roughly with the inverse square of the wavelength.117   
This background is called grass because it resembles blades of grass when 
observed using green Hg light. 
 Ghosts and grass are in-plane effects (that is, they are seen in and near the 
dispersion plane) and lead to interorder scatter.  Holographic gratings, whose 
grooves are formed simultaneously, do not exhibit measurable groove 
placement irregularities if made properly and therefore generally exhibit lower 
levels of interorder scatter.   With the use of sophisticated interferometric 
control systems on modern ruling engines, though, this advantage has been 
reduced when holographic gratings are compared with recently-ruled gratings. 

10.1.4. Irregularities in the depth of the grooves 

 A distribution of groove depths about the nominal groove depth is a natural 
consequence of the burnishing process and the elasticity of metal coatings (in 
the case of ruled master gratings) or to local variations in exposure intensities 
and developing conditions (in the case of holographic master gratings).  These 
variations have been shown to generate a continuous distribution of scattered 
light that varies with the inverse cube of the wavelength.118 

10.1.5. Spurious fringe patterns due to the recording system 

 For holographic gratings, care must be taken to suppress all unwanted 
reflections and scattered light when producing the master grating.  Light from 

                                                           
117 Ibid. 
118 Ibid. 
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optical mounts, for example, may reach the master grating substrate during 
exposure and leave a weak fringe pattern that causes scattered light when the 
grating is coated with a metal and illuminated.119  A scratch on a lens in a 
recording beam can create a “bulls-eye” pattern on the master grating that serves 
as a scatter center for every replica made from that master.  Recording the 
holographic master in incoherent light can reduce the stray light attributable to 
recording artifacts.120 

10.1.6. The perfect grating 

 From the perspective of scattered light, a perfect grating would have 
a pattern of perfectly placed grooves (no variation in spacing from any groove 
to the next, and no additional pattern to the grooves leading to spacings d’ ≠ d), 
each of the proper depth (no variation), and the surface irregularities on the 
grooves would be so much smaller than the wavelength of incident light that 
these irregularities would have no effect on the diffracted light.  Moreover, this 
perfect grating would have no scratches, digs, blemishes or other visible surface 
features, and (if holographic) would contain no holographic artifacts of the 
recording optical system.  In this ideal case, we might be forgiven in thinking 
that all light incident on the grating would leave according to the grating 
equation (2-1) for the nominal groove spacing d.   
 A general expression for the light intensity from a perfect grating is given 
by Sharpe and Irish121 as 

                                                           
119 M. C. Hutley, Diffraction Gratings, Academic Press (New York, 1970), p. 107. 
120 M. C. Hutley, “Improvements in or relating to the formation of photographic records,” UK 
Patent no. 1384281 (1975);  E. Sokolova, B. Kruizinga and I. Golubenko, “Recording of concave 
diffraction gratings in a two-step process using spatially incoherent light,” Opt. Eng. 43, 2613-2622 
(2004). 
121 M. R. Sharpe and D. Irish, "Stray light in diffraction grating monochromators," Opt. Acta 25, 
861-893 (1978). 
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where λ is the illumination wavelength, λ  is the monochromator setting (which 
determines the orientation of the grating: it is not a wavelength), λB is the blaze 
wavelength, B is the spectral bandpass of the instrument, and N is the number of 
grooves under illumination.  We see that this equation is generally non-zero, so 
we must abandon any hope that a perfect grating will have provide no radiant 
flux anywhere except in its diffraction orders. 

10.2. INSTRUMENTAL STRAY LIGHT 

 Consider a spectrometer aligned so that the detector records the analytical 
wavelength λ in spectral order m.  Our definition of instrumental stray light 
leads to its operational definition as light of either the wrong wavelength λ′ ≠ λ 
or the wrong spectral order m′ ≠ m that reaches the detector; this is generally a 
problem because most detectors are not wavelength-selective and cannot 
distinguish between light of wavelength λ and light of wavelength λ′ ≠ λ.   Also 
included in our definition of stray light is any light that reaches the detector that 
does not follow the optical path for which the system was designed, even if this 
light is of wavelength λ and diffraction order m. 
 Instrumental stray light can be attributed to a number of factors. 

10.2.1. Grating scatter 

 Light scattered by the grating, as discussed in Section 10.1 above, may 
reach the detector and contribute to instrumental stray light.  This type of stray 
light is absent for a “perfect” grating. 

10.2.2. Other diffraction orders from the grating 

 Light of the analytical wavelength λ is not only diffracted into order m, but 
into any other orders that propagate.  The zero order, which always propagates 
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but is almost always of no value in the instrument, is particularly troublesome.  
The other diffracted beams are not oriented toward the detector by the grating, 
but if these beams are reflected by a wall, a mount or another optical 
component, or if these beams scatter off any interior surfaces in the instrument, 
some fraction of their intensity may reach the detector and contribute to 
instrumental stray light.  This type of stray light is not absent even for a perfect 
grating, and requires proper instrumental design (e.g., baffles, light traps, order-
sorting filters etc.) to reduce. 

10.2.3. Overfilling optical surfaces 

 Fraunhofer diffraction from the illuminated edges of optical surfaces can be 
a significant cause of instrumental stray light.  All optics in the path should be 
underfilled (that is, the illuminated area on the surface of each optic should fall 
within the edges of the optic), with masks or other apertures if necessary.  
Verrill has suggested that the intensity in the incident beam fall off (from the 
center) according to a Gaussian function, to avoid an abrupt cut-off of intensity 
at the edge of the beam.122 
 Another important contributor to the instrumental stray light in some optical 
systems is the illumination of optical components downstream from the grating 
by light of wavelengths in the same diffraction order near the analytical 
wavelength λ (i.e., the wavelength for which the monochromator is tuned).  For 
example, in a Czerny-Turner monochromator (see Figure 6-1), the instrument 
may be designed so that light of wavelength λ underfills the concave mirror 
after the grating, but light of wavelength λ±Δλ will diffract at slightly different 
angles and may impinge upon the edges of the grating: these rays will scatter 
from these edges and may reach the detector.123   

10.2.4. Direct reflections from other surfaces  

 The dispersive quality of diffraction gratings causes each wavelength 
incident on it to be diffracted into a different set of directions (according to the 

                                                           
122 J. F. Verrill, “The specification and measurement of scattered light from diffraction gratings,” 
Opt. Acta 25, 531-547 (1978). 
123 S. Brown and A. W. S. Tarrant, “Scattered light in monochromators,” Opt. Acta 25, 1175-1186 
(1978). 
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grating equation), which in turn will illuminate the interior of the optical 
system.124  Light in another order m′ ≠ m or at another wavelength λ′ ≠ λ for 
which m′λ′ ≠ mλ will not be diffracted toward the exit slit, but as in Section 
10.2.2, this light may be reflected or scattered by other optical components, 
mounts or interior walls and directed toward the exit slit.   
 For certain wavelengths, light may reflect from another surface toward the 
grating and be rediffracted to the detector (called multiply diffracted light).125   
For example, in a Czerny-Turner monochromator (see Section 6.2.1), light can 
be diffracted by the grating back toward the first concave mirror and reflected 
toward the grating; this light will be diffracted again, and may reach the second 
mirror and then the exit slit.  [Of course, the analogous situation may arise 
involving the second mirror instead of the first.]  These possibilities can be 
eliminated by proper system design,126 filtering,127 or the use of masks.128 
 Proper instrument design and the use of baffles and light traps can reduce 
the effects of these unwanted reflections on instrumental stray light.  Care in the 
analysis of the causes of stray light is especially important for monochromators, 
since all wavelengths in all diffraction orders (including the zero order) move as 
the analytical wavelength is scanned, so a wall or mount that does not cause 
stray light when the grating is in one orientation may be a major cause of stray 
light when the grating is rotated to another orientation. 
 Reflection (and diffuse scatter) from interior instrument walls can be 
reduced by using highly-absorbing paint or coatings on these surfaces, and 
moving these surfaces as far from the optical train as possible (for this reason, it 
is generally more difficult to reduce stray light in smaller instruments).  
 Light can also scatter (or be reflected) by the exit slit.129 

                                                           
124 ASTM standard E387, “Standard Test Method for Estimating Stray Radiant Power Ratio of 
Dispersive Spectrophotometers by the Opaque Filter Method” (2004). 
125 J. J. Mitteldorf and D. O. Landon, “Multiply diffracted light in the Czerny-Turner spectrometer,” 
Appl. Opt. 7, 1431-1435 (1968);  R. C. Hawes, ”Multiply diffracted light in the Czerny-Turner 
spectrometer,” Appl. Opt. 8, 1063 (1969);  A. B. Shafer and D. O. Landon, “Comments on Multiple 
Diffracted Light in a Czerny-Turner Spectrometer,” Appl. Opt. 8, 1063-1064 (1969).  
126 J. F. Verrill, “The specification and measurement of scattered light from diffraction gratings,” 
Opt. Acta 25, 531-547 (1978). 
127 A. Watanabe and G. C. Tabisz, “Multiply diffracted light in Ebert Monochromators,” Appl. Opt. 
6, 1132-1134 (1967). 
128 C. M. Penchina, “Reduction of stray light in in-plane grating spectrometers,” Appl. Opt. 6 1029-
1031 (1967). 
129 Ibid. 
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 Tilting the detector element or array slightly, so that any reflections from its 
surface propagate out of the dispersion plane, can reduce the effects of this 
cause of stray light.  

10.2.5. Optical effects due to the sample or sample cell  

 In analytical instruments, care must be taken to choose sample cells that are 
properly designed (given the characteristics of the optical path) and made of 
materials that do not fluoresce; otherwise the cell will be a source of stray light.  
Moreover, some samples will themselves fluoresce.   

10.2.6. Thermal emission  

 For work in the far infrared, the blackbody radiation of all components in 
the instrument (as well as the instrument walls) will generate a background in 
the same spectral range as that of the analytical wavelength (e.g., at room 
temperature (293 K = 20 °C = 68 °F), objects radiate with a spectrum that peaks 
at c. λ = 10 μm).130 
 

 It is clear that a spectrometer containing a perfect grating (one that exhibits 
no detectable scattered light) will still have nonzero instrumental stray light.  
The often-made statement “the grating is the greatest cause of stray light in the 
system” may well be true, but even a perfect grating must obey the grating 
equation. 

10.3. ANALYSIS OF OPTICAL RAY PATHS IN A GRATING-
BASED INSTRUMENT 

 Although a thorough raytrace analysis of an optical system is generally 
required to model the effects of scattered light, we may approach the case of 
a simple grating-based instrument conceptually.  We consider the case in which 

                                                           
130 J. E. Stewart, “The effect of extraneous radiation on photometric accuracy of infrared 
spectrophotometers,” Appl. Opt. 2, 1141-1146 (1963). 
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the grating is illuminated with monochromatic light; the more general case in 
which many wavelengths are present can be considered by extension. 
 A simple case is shown in Figure 10-1.  Light of wavelength λ enters the 
instrument through the entrance slit and diverges toward the grating, which 
diffracts the incident light into a number of orders {m} given by the grating 
equation (for all orders m for which β given by Eq. (2-1) is real).  One of these 
orders (say m = 1) is the analytical order, that which is designed to pass through 
the exit slit.  All other propagating orders, including the ever-present m = 0 
order, are diffracted away from the exit slit and generally strike an interior wall 
of the instrument, which absorbs some of the energy, reflects some, and scatters 
some.   
 

  

 

first order 

incident 

second order 

zero o rder 

G 

ES 

XS 

 

Figure 10-1.  A simple grating system.  Monochromatic light enters the system through 
the entrance slit ES and is diffracted by grating G into several orders by the grating; one 
of these orders (the analytical order) passes through the exit slit XS.  Also shown are 
various rays other than that of the analytical order that may reflect or scatter off interior 
walls or other optics and reach the exit slit.  [For simplicity, focusing elements are not 
shown.]   

 

 Some of the light reaching the interior walls may reflect or scatter directly 
toward the exit slit, but most of it does not; that which is reflected or scattered in 
any other direction will eventually reach another interior wall or it will return to 
the grating (and thereby be diffracted again). 



 

 163

 This simple illustration allows us to draw a number of conclusions 
regarding the relative intensities of the various rays reaching the exit slit.  We 
call E(λ,m) the diffraction efficiency of the grating (in this use geometry) at 
wavelength λ in order m; therefore we choose a grating for which E(λ,1) is 
maximal in this use geometry (which will minimize the efficiencies of the other 
propagating orders: E(λ,0), E(λ,−1), etc.; see Section 9.12).  We further call ε 
the fraction of light incident on an interior wall that is reflected and φ the 
fraction that is scattered in any given direction, and stipulate that both ε and φ 
are much less of unity (i.e., we have chosen the interior walls to be highly 
absorbing).  [Generally ε and φ depend on wavelength and incidence angle, and 
φ on the direction of scatter as well, but for this analysis we ignore these 
dependencies.] 
 With these definitions, we can approximate total intensity I(λ,1) of the light 
incident on the grating that reaches the exit slit when the system is tuned to 
transmits wavelength λ in order m = 1 as 

  I(λ,1) =  I0(λ) E(λ,1)  
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where I0(λ) is the intensity incident on the grating and )3(O represents terms of 
order three or higher in ε and φ.   
 The first term in Eq. (10-2) is the intensity in the analytical wavelength and 
diffraction order; in an ideal situation, this would be the only light passing 
through the exit slit, so we may call this quantity the “desired signal”.  
Subtracting this quantity from both sides of Eq. (10-2), dividing by it and 
collecting terms yields the fractional stray light S(λ,1): 
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The first term in Eq. (10-3) is the sum, over all other propagating orders, of the 
fraction of light in those diffracted orders that is reflected by an interior wall to 
the exit slit, divided by the desired signal; each element in this sum is generally 
zero unless that order strikes the wall at the correct angle.  The second term is 
the sum, over all other orders, of the fraction of light in those orders that is 
scattered directly into the exit slit; the elements in this sum are generally 
nonzero, again divided by the desired signal.  Both of these sums are linear in ε 
or φ (both << 1) and in E(λ,m≠1) (each of which is considerably smaller than 
E(λ,1) since we have chosen the grating to be blazed in the analytical order).  
The third through fifth sums represent light that is reflected off two walls into 
the exit slit, or scattered off two walls into the exit slit, or reflected off one wall 
and scattered off another wall to reach the exit slit – in all three cases, the terms 
are quadratic in either ε or φ and can therefore be neglected (under our 
assumptions).  
 If we generalize this analysis for a broad-spectrum source, so that 
wavelengths other than λ are diffracted by the grating, then we obtain 
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Note that, in each term, the integral over wavelength is inside the sum, since the 
upper limit of integration is limited by the grating equation (2-1) for each 
diffraction order m.  Of course, the integration limits may be further restricted if 
the detector employed is insensitive in certain parts of the spectrum. 
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10.4. DESIGN CONSIDERATIONS FOR REDUCING STRAY LIGHT 

 From Section 10.3, we can identify some suggestions for designing 
a grating-based system for which instrumental stray light is reduced. 
 First, start with a grating as close to the definition of “perfect” in Section 
10.1.6 as possible (easier said than done), and blaze it so that E(λ,m=1) is as 
high as possible and E(λ,m≠1) are as low as possible for all other m.  Provided 
other design considerations (e.g., dispersion) are met, it may be advantageous to 
choose a groove spacing d such that only the first and zero orders propagate; by 
the analysis in Section 10.3, this will reduce each sum in Eq. (10-2) and Eq. (10-
4) to one element each (for m = 0). 
 Use an entrance slit that is as small as possible, and an exit slit that is as 
narrow as possible (without being narrower than the image of the entrance slit) 
and as short as possible (without reducing the signal to an unacceptably low 
level).   
 Underfill the grating and all other optical components, preferably by using 
a beam with a Gaussian intensity distribution.  This will ensure that essentially 
all of the light incident on the grating will be diffracted according to the grating 
equation (2-1). 
 Next, design the system to contain as few optical components between the 
entrance slit and the exit slit (or detector element(s)), for two reasons: each optic 
is a source of scatter, and each optic will pass less than 100% of the light 
incident on it – both of these effects will reduce the signal-to-noise (SNR) ratio.  
Specify optical components with very smooth surfaces (a specification which is 
more important when a short wavelength is used, since scatter generally varies 
inversely with wavelength to some power greater than unity131). 
 Design the optical system so that the resolution is slit-limited, rather than 
imaging-limited (see Section 8.3); this will reduce the spectral bandwidth 
passing through the exit slit (whose width, multiplied by the reciprocal linear 
dispersion, will equal the entire spectral range passing through the slit; 
otherwise, the imaging imperfections will allow some neighboring wavelengths 
outside this range to pass through as well). 
 The choice of mounting (see chapters 6 and 7) can also affect instrumental 
stray light.  For example, a Czerny-Turner monochromator (with two concave 

                                                           
131 Stover, J. C., Optical Scattering: Measurement and Analysis (McGraw-Hill, New York: 1990). 
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mirrors; see Section 6.2.1) will generally have lower stray light than 
a comparable Littrow monochromator (with a single concave mirror; see Section 
6.2.4) since the former will allow the entrance and exit slits to be located father 
apart.132  
 Make the distances between the surfaces as large as possible to take 
advantage of the inverse square law that governs intensity per unit area as light 
propagates; an underused idea is to design the optical system in three dimension 
rather than in a plane – this reduces the volume taken by the optical system and 
also removes some optics from the dispersion plane (which will reduce stray 
light due to reflections and multiply diffracted light).   
 Use order-sorting filters where necessary (or, for echelle systems, cross-
dispersers133).  Also, the use of high-pass or low-pass filters to eliminate 
wavelengths emitted by the source but outside the wavelength range of the 
instrument, and to which the detector is sensitive, will help reduce stray light by 
preventing the detector from seeing these wavelengths. 
 It may be advantageous to make the interior walls not only highly absorbing 
but reflecting rather than scattering (i.e., use a glossy black paint rather than 
a flat black paint).  The rationale for this counterintuitive suggestion is that if all 
unwanted light cannot be absorbed, it is better to control the direction of the 
remainder by reflection rather than to allow it to scatter diffusely; controlled 
reflections from highly-absorbing surfaces (with only a few percent of the light 
reflected at each surface) will quickly extinguish the unwanted light without 
adding to diffuse scatter.  Of course, care must be taken during design to ensure 
that there are no direct paths (for one or two reflections) directly to the exit slit; 
baffles can be helpful when such direct paths are not otherwise avoidable. 
 Avoid grazing reflections from interior walls, since at grazing angle even 
materials that absorb at near-normal incidence are generally highly reflecting. 
 Ensure that the system between the entrance slit and the detector is 
completely light-tight, meaning that room light cannot reach the detector, and 
that only light passing through the entrance slit can reach the exit slit. 

                                                           
132 J. F. Verrill, “The specification and measurement of scattered light from diffraction gratings,” 
Opt. Acta 25, 531-547 (1978). 
133 R. W. Wood, J. Opt. Soc. Am. 37, 733 (1947); G. R. Harrison, “The production of diffraction 
gratings: II. The design of echelle gratings and spectrographs,” J. Opt. Soc. Am. 39, 522-528 (1949). 
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 Finally, hide all mounting brackets, screws, motors, etc. – anything that 
might scatter or reflect light.  Any edges (including the slits) should be painted 
with a highly absorbing material; this includes the edges of baffles. 
 While it is always best to reduce instrumental stray light as much as 
possible, a lock-in detection scheme can be employed to significantly reduce the 
effects of instrumental stray light.  The technique involves chopping (alternately 
blocking and unblocking) the principal diffraction order and using phase-
sensitive detection to retrieve the desired signal.134 
 A useful technique at the breadboard stage (or, if necessary, the product 
stage) is to operate the instrument in a dark room, replace the exit slit or detector 
with the eye, and look back into the instrument (taking adequate precautions if 
intense light is used).  What other than the last optical component can be seen?  
Are there any obvious sources of scatter, or obvious undesirable reflections?  
What changes as the wavelength is scanned?  Before the availability of 
commercial stray light analysis software, this technique was often used to 
determine what surfaces needed to be moved, or painted black, or hidden from 
“the view of the exit slit” by baffles and apertures; even today, optical systems 
designed with such software should be checked in this manner. 
  

                                                           
134 H. Field, “UV-VIS-IR spectral responsivity measurement system for solar cells,” National 
Renewable Energy Laboratory pub. CP-520-25654 (November 1998). 
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11. TESTING AND CHARACTERIZING 
DIFFRACTION GRATINGS  

 

 

11.1. THE MEASUREMENT OF SPECTRAL DEFECTS135 

 It is fundamental to the nature of diffraction gratings that errors are 
relatively easy to measure, although not all attributes are equally detectable or 
sometimes even definable. 
 For example, a grating with low background (in the form of scatter or 
satellites) can be simply tested for Rowland ghosts on an optical bench.  With a 
mercury lamp or a laser source, and a scanning slit connected to a detector and 
recorder, a ghost having intensity 0.002% of the intensity of the main line can 
be easily observed.  The periodic error in the groove spacing giving rise to such 
a ghost may be less than one nanometer. 
 Grating ghosts are measured at Newport by making the grating part of 
a scanning spectrometer and illuminating it with monochromatic light, such as 
that from a mercury isotope lamp (isotope 198 or 202) or a helium-neon laser.  
On scanning both sides of the parent line, using a chart recorder and calibrated 
attenuators, it is easy to identify all ghost lines and to measure their intensities 
relative to the parent line.   
 The importance of ghosts in grating applications varies considerably.  In 
most spectrophotometers, and in work with low-intensity sources, ghosts play a 
negligible role.  In Raman spectroscopy, however, even the weakest ghost may 
appear to be a Raman line, especially when investigating solid samples, and 
hence these ghosts must be suppressed to truly negligible values. 
 Ghosts are usually classified as Rowland ghosts, Lyman ghosts and 
satellites.   

                                                           
135 For additional reading, see E. G. Loewen and E. Popov, Diffraction Gratings and Applications, 
Marcel Dekker, Inc. (1997), pp. 402-413. 
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11.1.1. Rowland ghosts   

 Rowland ghosts are spurious lines seen in some grating spectra that result 
from large-scale (millimeter) periodic errors in the spacing of the grooves (see 
Figure 11-1).  These lines are usually located symmetrically with respect to each 
strong spectral line at a (spectral) distance from it that depends on the period of 
the error, and with an intensity that depends on the amplitude of this error. 
 

 

 

Figure 11-1.  ‘Ghost’ trace showing Rowland ghosts caused by the periodic error of 2.54 
mm in the lead screw of the Newport MIT ‘B’ engine.  MR215 is an echelle grating, with 
52.67 g/mm, in this case tested in the 54th order. 

 

 If the curve of groove spacing error vs. position is not simply sinusoidal, 
there will be a number of ghosts on each side of the parent line representing the 
various orders from each of the harmonics of the error curve.  On engines with 
mechanical drives, Rowland ghosts are associated primarily with errors in the 
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lead or pitch of the precision screw, or with the bearings of the ruling engine.  
As a consequence, their location depends upon the number of grooves ruled for 
each complete turn of the screw.  For example, if the ruling engine has a pitch of 
2 mm, and a ruling is made at 1200 grooves/mm, 2400 grooves will be ruled per 
turn of the screw, and the ghosts in the first order can be expected to lie at 
Δλ = ± λ/2400 from the parent line λ, with additional ghosts located at integral 
multiples of Δλ.  In gratings ruled on engines with interferometric feedback 
correction mechanisms, Rowland ghosts are usually much less intense, but they 
can arise from the mechanisms used in the correction system if care is not taken 
to prevent their occurrence. 
 If the character of the periodic errors in a ruling engine were simply 
harmonic, which is rarely true in practice, the ratio of the diffracted intensities 
of the first order Rowland ghost (IRG(m=1)) to that of the parent line (IPL) is 
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I m , (11-1) 

where A is the peak simple harmonic error amplitude, α is the angle of 
incidence, and λ is the diffracted wavelength.   
 The second-order Rowland ghost IRG(m=2) will be much less intense (note the 
exponent): 
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Higher-order Rowland ghosts would be virtually invisible.  The ghost intensity 
is independent of the diffraction order m of the parent line, and of the groove 
spacing d.  In the Littrow configuration, Eq. (11-1) becomes 
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an expression derived in 1893 by Rowland. 
 These simple mathematical formulas do not always apply in practice when 
describing higher-order ghost intensities, since the harmonic content of actual 
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error curves gives rise to complex amplitudes that must be added vectorially and 
then squared to obtain intensity functions.  Fortunately, the result of this 
complication is that ghost intensities are generally smaller than those predicted 
from the peak error amplitude. 
 The order of magnitude of the fundamental harmonic error amplitude can 
be derived from Eq. (11-1) [or Eq. (11-3)].  For example, a 1200 g/mm grating 
used in the m = 1 order in Littrow will show a 0.14% first-order ghost intensity, 
compared with the parent line, for a fundamental harmonic error amplitude of 
A = 10 nm.  For some applications, this ghost intensity is unacceptably high, 
which illustrates the importance of minimizing periodic errors of ruling.  For 
Raman gratings and echelles, the amplitude A of the periodic error must not ex-
ceed one nanometer; the fact that this has been accomplished is a remarkable 
achievement. 

11.1.2. Lyman ghosts  

 Ghost lines observed at large spectral distances from their parent lines are 
called Lyman ghosts.  They result from compounded periodic errors in the 
spacing of the grating grooves; the period of Lyman ghosts is on the order of a 
few times the groove spacing.   
 Lyman ghosts can be said to be in fractional-order positions (see Figure 
11-2).  Thus, if every other groove is misplaced so that the period contains just 
two grooves, ghosts are seen in the half-order positions.  The number of grooves 
per period determines the fractional-order position of Lyman ghosts.   
 Usually it is possible to find the origin of the error in the ruling engine once 
its periodicity is determined.  It is important that Lyman ghosts be kept to a 
minimum, because they are not nearly as easy to identify as Rowland ghosts. 

11.1.3. Satellites 

 Satellites are false spectral lines usually occurring very close to the parent 
line.  Individual gratings vary greatly in the number and intensity of satellites 
which they produce.  In a poor grating, they give rise to much scattered light, re-
ferred to as grass (so called since this low intensity scattered light appears like 
a strip of lawn when viewed with green mercury light).  In contrast to Rowland 
ghosts, which usually arise from errors extending over large areas of the grating, 
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each satellite usually originates from a small number of randomly misplaced 
grooves in a localized part of the grating.  With laser illumination, a relative 
background intensity of 10–7 is easily observable with the eye.  
 

 

 

Figure 11-2.  ‘Ghost’ trace showing Lyman ghosts (the small spikes between orders 2 
and 3), which can be associated with fractional order positions, e.g., an error every five 
grooves corresponds to a fraction order of 1/5.   
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11.2. THE MEASUREMENT OF GRATING EFFICIENCY136 

 Grating efficiency measurements are generally performed with a double 
monochromator system.  The first monochromator supplies monochromatic light 
derived from a tungsten lamp, mercury arc, or deuterium lamp, depending on 
the spectral region involved.  The grating being tested serves as the dispersing 
element in the second monochromator.  In the normal mode of operation, the 
output is compared with that from a high-grade mirror coated with the same 
material as the grating.  The efficiency of the grating relative to that of the 
mirror is reported (relative efficiency), although absolute efficiency values can 
also be obtained (either by direct measurement or through knowledge of the 
variation of mirror reflectance with wavelength).  For plane reflection gratings, 
the wavelength region covered is usually 190 nm to 2.5 µm; gratings blazed 
farther into the infrared are often measured in higher orders.  Concave reflection 
gratings focus as well as disperse the light, so the entrance and exit slits of the 
second monochromator are placed at the positions for which the grating was 
designed (that is, concave grating efficiencies are measured in the geometry in 
which the gratings are to be used).  Transmission gratings are tested on the same 
equipment, with values given as the ratio of diffracted intensity to the intensity 
falling directly on the detector from the light source (i.e., absolute efficiency). 
 Curves of efficiency vs. wavelength for plane gratings are made routinely 
on all new master gratings produced by Newport, both plane and concave, with 
light polarized in the S and P planes to assess the presence and amplitudes (if 
any) of anomalies.  Such curves are furnished by Newport upon request (for an 
example, see Figure 11-3).   

                                                           
136 For additional reading, see E. G. Loewen and E. Popov, Diffraction Gratings and Applications, 
Marcel Dekker, Inc. (1997), pp. 413-423, and also D. J. Michels, T. L. Mikes and W. R. Hunter, 
”Optical grating evaluator: a device for detailed measurement of diffraction grating efficiencies in 
the vacuum ultraviolet,“ Appl. Opt. 13, 1223-1229 (1974). 
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Figure 11-3.  Example of an efficiency curve.   This efficiency curve is specific to the 
particular grating under test, as well as the conditions of illumination (the incidence and 
diffraction angles). 

11.3. THE MEASUREMENT OF DIFFRACTED WAVEFRONT 
QUALITY 

11.3.1. The Foucault knife-edge test 

 One of the most critical tests an optical system can undergo is the Foucault 
knife-edge test.  This test not only reveals a great deal about wavefront 
deficiencies but also locates specific areas (or zones) on the optical component 
where they originate.  The test is suited equally well to plane and concave 
gratings (for the former, the use of very high grade collimating optics is re-
quired).  The sharper (i.e., more abrupt) its knife-edge cut-off, the more likely 
that a grating will yield high resolution.   



 

 176

 The sensitivity of the test depends on the radius of the concave grating (or 
the focal length of the collimating system), and may exceed that of inter-
ferometric testing, although the latter is more quantitative. 
 The Foucault test is a sensitive and powerful tool, but experience is 
required to interpret each effect that it makes evident.  All Newport master plane 
gratings, large plane replicas and large-radius concave gratings are checked by 
this method (see Figure 11-4). 
 

 
  

 
 

Figure 11-4.  A grating under test on the Newport 5-meter test bench.   Light from 
a mercury source (not shown, about 5 meters to the right) is collimated by the lens 
(shown) which illuminates the grating (shown on a rotation stage); the same lens 
refocuses the diffracted light to a plane very near the light source, where the diffracted 
wavefront can be inspected. 
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11.3.2. Direct wavefront testing 

 Any departure from perfect flatness of the surface of a plane grating, or 
from a perfect sphere of the surface of a concave grating, as well as variations in 
the groove spacing, depth or parallelism, will result in a diffracted wavefront 
that is less than perfect.  In order to maintain resolution, this departure from 
perfection is generally held to λ/4 or less, where λ is the wavelength of the light 
used in the test.  To obtain an understanding of the magnitudes involved, it is 
necessary to consider the angle at which the grating is used.  For simplicity, 
consider this to be the blaze angle, under Littrow conditions.  Any surface figure 
error of height h will cause a wavefront deformation of 2h cosθ, which 
decreases with increasing |θ|.  On the other hand, a groove position error p 
introduces a wavefront error of 2p sinθ, which explains why ruling parameters 
are more critical for gratings used in high-angle configurations. 
 A plane grating may produce a slightly cylindrical wavefront if the groove 
spacing changes linearly, or if the surface figure is similarly deformed.  In this 
special case, resolution is maintained, but focal distance will vary with 
wavelength. 
 Wavefront testing can be done conveniently by mounting a grating at its 
autocollimating angle (Littrow) in a Twyman-Green interferometer or a phase 
measuring interferometer (PMI; see Figure 11-5).  Newport interferometers 
have apertures up to 150 mm (6 inches).   With coherent laser light sources, 
however, it is possible to make the same measurements with a much simpler 
Fizeau interferometer, equipped with computer fringe analysis. 
 It should be noted that testing the reflected wavefront – that is, illuminating 
the grating in zero order – is generally inadequate since this arrangement will 
examine the flatness of the grating surface but tells nothing about the uniformity 
of the groove pattern. 
 Periodic errors give rise to zig-zag fringe displacements.  A sudden change 
in groove position gives rise to a step in the fringe pattern; in the spectrum, this 
is likely to appear as a satellite.  Curved fringes due to progressive ruling error 
can be distinguished from figure problems by observing fringes obtained in 
zero, first and higher orders.  Fanning error (non-parallel grooves) will cause 
spreading fringes.  Figure 11-6 shows a typical interferogram, for an echelle 
grating measured in Littrow in the diffraction order of use (m = 33). 
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Figure 11-5.  A plane grating under test on a phase measuring interferometer.   The 
grating is tested in the Littrow configuration so that the flatness of the diffracted 
wavefront is evaluated. 

 
 Experience has shown that the sensitivity of standard interferograms for 
grating deficiencies equals or exceeds that of other plane grating testing 
methods only for gratings used at high angles.  This is why the interferometric 
test is especially appropriate for the testing of echelles and other gratings used in 
high diffraction orders. 
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Figure 11-6.  Example of an interferogram and histogram generated by a Phase 
Measuring Interferometer (PMI).   In this example, a grating is illuminated in a circular 
region 50 mm in diameter, and its diffracted wavefront at λ = 632.8 nm in the m = 33 
order is recorded.   

11.4. THE MEASUREMENT OF RESOLVING POWER137 

 Resolving power (defined in Section 2.4) is an crucial characteristic of 
diffraction gratings since it is a measure of the fundamental property for which 
gratings are used: it quantifies the ability of the grating (when used in an optical 
system) to separate two nearby wavelengths.  Often resolving power is specified 
to be great enough that the resolution of the optical system will be slit limited 
rather than grating limited (see Section 8.3). 

                                                           
137 For additional reading, see J. Strong, “New Johns Hopkins ruling engine,” J. Opt. Soc. Am. 41, 
3-15 (1951), J. F. Verrill, “The limitations of currently used methods for evaluating the resolution of 
diffraction gratings,” Opt. Acta 28, 177-185 (1981), and E. G. Loewen and E. Popov, Diffraction 
Gratings and Applications, Marcel Dekker, Inc. (1997), pp. 423-432. 
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 Resolving power is generally measured in a spectrometer with a large focal 
length and very narrow slits in which the light source has fine spectral structure; 
an example is the hyperfine spectrum of natural Hg near 546.1 nm (see 
Figure 11-6).  The spectral lines are identified, and the wavelengths of those that 
are distinguishable (‘resolvable’) are subtracted, and this difference Δλ is 
divided into λ = 546.1 nm according to Eq. (2-17); the smaller the wavelength 
difference, the greater the resolving power.   
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Figure 11-6.  Hyperfine structure of natural Hg near 546.1 nm.  Several spectral lines are 
identified.  Visual identification of two distinct emission lines centered on λ and 
separated by Δλ implies a resolving power at least as great as λ/Δλ. 

 
 Resolving power is measured on Newport diffraction gratings using 
a specially-designed Czerny-Turner spectrograph, whose concave mirrors have 
very long focal lengths (10 m) so that very large astronomical gratings may be 
tested (see Section 13.3). 
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11.5. THE MEASUREMENT OF SCATTERED LIGHT138 

 As discussed in Chapters 2 and 10, light that leaves a grating surface that 
does not follow the grating equation (2-1) is called scattered light.  Scattered 
light is generally measured in one of two ways: either with cut-off filters (which 
absorb one part of the spectrum while transmitting the other part) or by using 
monochromatic light (from an atomic emission source or a laser, or by the use 
of interference filters that transmit a narrow spectral range).   
 Newport has two specially-designed instruments to measure light scattered 
from small regions on the surface of a mirror or grating: one uses red HeNe 
light (λ = 632.8 nm) to illuminate the grating, and the uses a Hg source to 
illuminate the grating (the light reaching the detector is filtered to transmit a 
narrow spectral band around 254 nm).  These “scatter checkers” provide several 
degrees of freedom so that light scattered between diffraction orders (called 
inter-order scatter) can be attributed to areas on the grating surface.   
 Figure 11-7 shows a simplified schematic diagram of the scatter checker.  
The beam from a polarized HeNe laser is spatially filtered to remove speckle 
and is then directed onto a concave focusing mirror that brings the beam to 
focus at the detector plane.  The detector is a photomultiplier that, in 
combination with a programmable-gain current amplifier, provides eight 
decades of dynamic range.  A PC equipped with a data acquisition card is used 
to process and store the detector signal.  
 Scatter measurements are made by first obtaining a reference beam profile 
(see Figure 11-8), or “instrument signature,” by translating the test optic out of 
the way and rotating the detector through the beam in incremental steps over 
a predetermined angular range.  The test optic is then translated into the beam 
path and the detector passed through the reflected (or diffracted) beam from the 
test optic over the same angular range used to make the reference measurement.   
The sample and reference beam profiles are “mirror images” of one another, so 
it is necessary to invert one before a comparison is made.  Any difference 
between the sample and reference beam profiles can be attributed to light 
scattered from the optic under test.  
 

                                                           
138 For additional reading, see J. F. Verrill, “The specification and measurement of scattered light 
from diffraction gratings,” Opt. Acta 25, 531-547 (1978). 
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Figure 11-7.  Schematic of the Newport red HeNe scatter measuring apparatus.  In order 
to minimize the effects that other diffraction orders may have on the scattered light 
readings, this instrument is not enclosed so that any light that leaves the grating in a 
direction other than toward the detector will travel a long distance before encountering a 
reflecting or scattering surface. 
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Figure 11-8.  Typical plot of data obtained from the Newport red HeNe scatter 
measuring instrument.  This plot of the measured signal vs. angle of rotation of the 
detector (from a diffracted order) shows the reference beam profile (the “instrument 
signature”). 
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 It is important to apply the lessons of Chapter 10 to the interpretation of 
grating scatter measurements.  That is, even a “perfect” grating (as defined in 
Section 10.1.6) illuminated with monochromatic light will cause other 
diffraction orders to propagate, and some of this light energy may reach the 
detector of the scatter measuring apparatus.  This is important when comparing 
the scatter characteristics of a grating with those of a high-quality mirror (using 
the latter as a reference’); the mirror produces only the m = 0 order (specular 
reflection) and will therefore exhibit lower scatter than even a “perfect” grating.  
This subtle point must be considered in defining the instrument signature of a 
grating-based optical system by using a mirror.  
 In analyzing grating scatter measurements, care must be taken to account 
for any stray light that is due to the measurement apparatus rather than the 
grating, as discussed in Sections 10.2 and 10.3. 

11.6. THE MEASUREMENT OF INSTRUMENTAL STRAY LIGHT 

 The consequence of undesired energy reaching the detector in a 
spectrometer is a reduction in photometric accuracy, since some light reaches 
the detector that cannot be attributed to the transmission (or absorption) of the 
sample at the analytical wavelength.   
 Instrumental stray light, like scattered light, is generally measured either 
with cut-off filters or monochromatic light.  

11.6.1. The use of cut-off filters139 

 Instrumental stray light is commonly measured in by using a set of high-
pass cut-off optical filters (whose transmission curves look like that in Figure 
11-9).  The spectrometer is then scanned toward shorter wavelengths and the 

                                                           
139 R. E. Poulson, “Test methods in spectrophotometry: stray-light determination,” Appl. Opt. 3, 99-
104 (1964);  A. W. S. Tarrant, “Optical techniques for studying stray light in spectrometers,” Opt. 
Acta 25, 1167-1174 (1978);  ASTM standard E387, “Standard Test Method for Estimating Stray 
Radiant Power Ratio of Dispersive Spectrophotometers by the Opaque Filter Method” (2004). 



 

 184

transmittance measured; once the transmittance level has reached a fairly steady 
minimum (a plateau), this reading is taken to be the stray light.140 
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Figure 11-9.  Transmission curve of a typical high-pass cut-off filter.  A filter of this type 
is generally specified by the cut-off wavelength λC, the wavelength at which its 
transmission coefficient is 50%.  The slope of the transmission curve near λC should be 
as steep as possible. 

 

 The instrument is tuned to the analytical wavelength λ and a series of 
filters, each with a successively higher cut-off wavelength λC (>λ), is placed in 
the beam and intensity readings taken at the detector.  [Generally λC should 
exceed λ by at least 20 nm, in the visible spectrum, to ensure than virtually no 
light of the analytical wavelength λ passes through the filter and complicates the 
readings.]  Nonzero readings indicate the presence of stray light.  A proper 
study requires measurements at more than one analytical wavelength since stray 
light properties cannot be easily extrapolated (due to the different wavelength 
dependencies of the causes of grating scatter and instrumental stray light noted 
above, and – for monochromators – the fact that all rays diffracted from or 
scattered by the grating change direction as the grating is rotated). 

                                                           
140 K. D. Mielenz, V. R. Weidner and R. W. Burke, “Heterochromic stray light in UV absorption 
spectrometry: a new test method,” Appl. Opt. 21, 3354-3356 (1982). 



 

 185

11.6.2. The use of monochromatic light 

 Another method for measuring instrumental stray light is to replace the 
polychromatic light source (used with cut-off filters) with a narrow-band 
monochromatic light source.  Atomic emission sources provide narrow spectral 
emission lines that can be used for this purpose; lasers can be used; and broad-
spectrum sources can be used in conjunction with bandpass filters.   
 Kaye141 describes a technique in which monochromatic light is used to 
determine the amount of power detected at all wavelength settings for a given 
input wavelength; this quantity is called the slit function.  The spectrometer 
(with slit widths w) is illuminated by light whose central wavelength is λ, and 
whose spectral width Δλ is very narrow (Δλ << λ).  Scanning through the full 
wavelength range of the instrument (the wavelength setting being denoted by 
λ ; see Section 10.1.6) and recording the power at each setting yields the slit 
function ( )wS ,λλ , which we may write as 

  ( )wS ,λλ  = ( ) λλλ λ RwMcE , , (11-4) 

where Eλ is the power emitted by the source, ( )wM ,λλ  is the transmittance of 
the optical system (between the source and the detector), Rλ is the sensitivity of 
the detector, and c is a constant of proportionality.  If we had knowledge of the 
slit function for all input wavelengths λ and for all wavelength settings λ , we 
would be able to write for any wavelength setting the following integral: 

  ( )wS ,λ =  ( )wS ,
0

λλ∫
∞

, (11-5) 

which represents the total power (for all wavelengths) recorded at wavelength 
setting λ .  In practice, the bounds of integration are not 0 and ∞, but are 
instead determined by the spectral sensitivity limits of the detector. 

                                                           
141 W. Kaye, “Resolution and stray light in near infrared spectroscopy,” Appl. Opt. 14, 1977-1986 
(1975). 
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 Stray light can then be expressed as the ratio of the intensities (powers) of 
the scattered light and principal beam.142 

11.6.3. Signal-to-noise and errors in absorbance readings 

 Often the unwanted light in a spectrometer is quantified not by instrumental 
stray light but by the signal-to-noise ratio (SNR), a dimensionless quantity of 
more relevance to instrumental specification.  The SNR is defined as the ratio of 
the signal (the desired power incident on the detector) to the noise (the 
undesired power, equivalent in our definition to the instrumental stray light).   
 Another specification of instrumental stray light is given in absorbance, a 
dimensionless quantity defined by 

  A = ⎟
⎠
⎞

⎜
⎝
⎛

T
100log10 , (11-6) 

where T is the percent transmittance (0 ≤ T ≤ 100).  Higher values of A 
correspond to lower transmittances, and instrumental stray light plays an 
important role in the highest value of A for which the readings are accurate; an 
instrument for which the stray light is about 1% as intense as the signal at a 
given wavelength cannot provide absorbance readings of any accuracy greater 
than A ≈ 2.   
 When the stray light power s is known (as a percentage of the signal), Eq. 
(11-6) may be modified to be made more accurate:143 

  A = ⎟
⎠
⎞

⎜
⎝
⎛

−
−
sT
s100log10 . (11-7) 

 

                                                           
142 A. W. S. Tarrant, “Optical techniques for studying stray light in spectrophotometers,” Opt. Acta 
25, 1167-1174 (1978); S. Brown and A. W. S. Tarrant, “Scattered light in monochromators,” Opt. 
Acta 25, 1175-1186 (1978). 
143 A. Opler, “Spectrophotometry in the presence of stray radiation: a table of log[(100-k)/(T-k)],” J. 
Opt. Soc. Am. 40, 401-403 (1950). 
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12. SELECTION OF DISPERSING SYSTEMS  
 

 

12.1. REFLECTION GRATING SYSTEMS 

 Reflection grating systems are much more common than transmission 
grating systems.  Optical systems can be 'folded' with reflection gratings, which 
reflect as well as disperse, whereas transmission grating systems are 'in-line' and 
therefore usually of greater length.  Moreover, reflection gratings are not limited 
by the transmission properties of the grating substrate (or resin), and can operate 
at much higher angles of diffraction. 

12.1.1. Plane reflection grating systems   

 The choice of existing plane reflection gratings is extensive and continually 
increasing.  Master gratings as large as 320 mm x 420 mm have been ruled.  For 
infrared spectra, plane reflection gratings are most suitable because of the avail-
ability of large gratings.  While plane gratings have been used for visible and 
ultraviolet spectra for some time, they are also used increasingly for 
wavelengths as short as 110 nm, an extension made possible by special over-
coatings that give satisfactory reflectivity even at such short wavelengths (see 
Chapter 9). 
 The most popular arrangement for plane reflection gratings is the Czerny-
Turner mount, which uses two spherical concave mirrors between the grating 
and the entrance and exit slits.  A single mirror arrangement (the Ebert-Fastie 
mount) can also be used.  Both achieve spectral scanning through rotation of the 
grating.  Collimating lenses are rarely used, since mirrors are inherently achro-
matic.  [See Chapter 6 for a discussion of plane grating mounts.] 
 For special purposes, plane reflection gratings can be made on unusual 
materials, such as ceramics or metals, given special shapes, or supplied with 
holes for Cassegrain and Coudé-type telescopic systems. 
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12.1.2. Concave reflection grating systems 

 The great advantage in using concave gratings lies in the fact that separate 
collimating optics are unnecessary.  This is particularly important in the far 
vacuum ultraviolet region of the spectrum, for which there are no good reflec-
tors.  Two mirrors, each reflecting 20% of the light incident on them, will 
reduce throughput by a factor of twenty-five.  Hence, concave systems dominate 
the entire ultraviolet region, and at wavelengths less than 110 nm are used 
exclusively.  Their chief deficiency lies in astigmatism, which limits the exit slit 
size (and, consequently, the energy throughput).  The situation can be improved 
somewhat by using toroidal grating substrates; however, their use is restricted 
because of high costs. 
 Though most ruled gratings are flat, curved substrates can be ruled as well 
if their curvatures are not extreme (c. ƒ/9 or greater).  Concave gratings are not 
only more difficult to rule than plane gratings, since the tool must swing through 
an arc as it crosses the substrate, but they require extremely tight control over 
the sphericity to the substrate as well.  Since each radius of curvature is a new 
parameter, there cannot be the large selection of rulings (in size and blaze angle) 
for any one given radius that there is with plane gratings. 
 Another limitation of ruled concave gratings appears when they are ruled at 
shallow groove angles.  The ruled width is unfortunately limited by the radius of 
the substrate, since the diamond cannot rule useful grooves when the slope 
angle of the substrate exceeds the blaze angle.  The automatic energy limitation 
that is thereby imposed can be overcome by ruling multipartite gratings, a 
Newport development.  Here the ruling is interrupted once or twice, so the tool 
can be reset at a different angle.  The resulting bipartite or tripartite gratings are 
very useful, as available energy is otherwise low in the short wavelength 
regions.  One must not expect such gratings to have a resolving power in excess 
of that of any single section, for such an achievement would require phase 
matching between the grating segments to a degree that is beyond the present 
state of the art. 
 The advent of the holographic method of generating gratings has made the 
manufacture of concave gratings commonplace.  Since the fringe pattern formed 
during the recording process is three-dimensional, a curved substrate placed in 
this pattern will record fringes.  Unlike ruled gratings, concave holographic 
gratings can be generated on substrates whose radii are smaller than 100 mm. 
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12.2. TRANSMISSION GRATING SYSTEMS 

 In certain types of instrumentation, transmission gratings (see Figure 12-1) 
are much more convenient to use than reflection gratings.  The most common 
configuration involves converting cameras into simple spectrographs by 
inserting a grating in front of the lens.  This configuration is often used for 
studying the composition of falling meteors or the re-entry of space vehicles, 
where the distant luminous streak becomes the entrance slit.  Another 
application where high-speed lenses and transmission gratings can be combined 
advantageously is in the determination of spectral sensitivity of photographic 
emulsions. 
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Figure 12-1.  Diffraction by a plane transmission grating. A beam of monochromatic 
light of wavelength λ is incident on a grating at angle α to the grating normal, and 
diffracted along several discrete paths {βm}, for diffraction orders {m}.  The incident and 
diffracted rays lies on opposite sides of the grating.  The configuration shown, in which 
the transmission grating is illuminated from the back, is most common.   
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 Transmission gratings can be made by stripping the aluminum film from the 
surface of a reflection grating.  However, since the substrate is now part of the 
imaging optics, special substrates are used, made to tighter specifications for 
parallelism, and those used in the visible region are given a magnesium fluoride 
(MgF2) antireflection coating on the back to reduce light loss and internal 
reflections.  The material used to form the substrate must also be chosen for its 
transmission properties and for the absence of bubbles, inclusions, striae and 
other imperfections, none of which is a concern for reflection gratings. 
 In most cases, relatively coarse groove frequencies are preferred for 
transmission gratings, although gratings up to 600 g/mm are furnished routinely.  
Experimentally, transmission gratings of 1200 g/mm have been used.  Energy 
distribution on either side of the blaze peak is very similar to that of reflection 
gratings in the scalar domain.  For wavelengths between 220 and 300 nm, trans-
mission gratings are made on fused silica substrates with a special resin capable 
of high transmission for these wavelengths. 
 Since transmission gratings do not have a delicate metal film they are much 
more readily cleaned.  However, they are limited to spectral regions where 
substrates and resins transmit.  Their main drawback is that they do not fold the 
optical path conveniently as a reflection grating does.  Moreover, to avoid total 
internal reflection, their diffraction angles cannot be extreme.  Even though the 
surface of the substrate is antireflection coated, internal reflections from the 
grating-air interface leads to some backward-propagating orders (that is, the 
transmission grating will also behave as a weak reflection grating); this limits 
the maximum efficiency to about 80%.144  The efficiency behavior of 
transmission gratings can be modeled adequately over a wide spectral range and 
for a wide range of groove spacing by using scalar efficiency theory.145   
 For a reflection grating of a given groove angle θB with first-order blaze 
wavelength λB, the transmission grating with the same groove angle will be 
blazed between λB/4 and λB/3, depending on the index of refraction of the resin.  
This estimate is often very good, though it becomes less accurate for θB > 25°. 
 Although there are cases in which transmission gratings are applicable or 
even desirable, they are not often used: reflection gratings are much more 

                                                           
144 M. Nevière, “Electromagnetic study of transmission gratings,” Appl. Opt. 30, 4540-4547 (1991). 
145 E. K. Popov, L. Tsonev and E. G. Loewen, “Scalar theory of transmission relief gratings,” Opt. 
Commun. 80, 307-311 (1991). 
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prevalent in spectroscopic and laser systems, due primarily to the following 
advantages: 

• Reflection gratings may be used in spectral regions where glass 
substrates and resins absorb light (e.g., the ultraviolet). 

• Reflection gratings provide much higher resolving power than 
equivalent transmission gratings, since the path difference between 
neighboring beams (i.e., separated by a single groove) is higher in the 
case of the reflection grating – therefore transmission gratings much 
generally be wider (so that more grooves are illuminated) to obtain 
comparable resolving power. 

• Reflection grating systems are generally smaller than transmission 
grating systems since the reflection grating acts as a folding mirror. 

12.3. GRATING PRISMS (GRISMS) 

 For certain applications, such as a direct vision spectroscope, it is very 
useful to have a dispersing element that will provide in-line viewing for one 
wavelength.  This can be done by replicating a transmission grating onto the hy-
potenuse face of a right-angle prism.  The light diffracted by the grating is bent 
back in-line by the refracting effect of the prism.  The device is known as a 
Carpenter prism, but is more commonly called a grism. 
 The derivation of the formula for computing the required prism angle 
follows (refer to Figure 12-2).  On introducing Snell's law, the grating equation 
becomes 

  mλ = d (n sinα + n' sinβ), (12-1) 

where n and n' are the refractive indices of glass and air, respectively, and β < 0 
since the diffracted ray lies on the opposite side of the normal from the incident 
rays (α > 0).   
 Taking n' = 1 for air, and setting α = –β = φ, the prism angle, Eq. (12-1) 
becomes 

  mλ = d (n–1) sinφ. (12-2) 
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In this derivation it is assumed that the refractive index n of the glass is the same 
(or very nearly the same) as the index nE of the resin at the straight-through 
wavelength λ.  While this is not likely to be true, the resulting error is often 
quite small.   
 

 
 

n n E n' 

φ 
θ 

α 

β  =  – α 

GN 

 
 

Figure 12-2.  Grating prism (grism).  The ray path for straight-through operation at one 
wavelength is shown.  The refractive indices of the prism, resin and air are indicated as n, 
nE and n′, respectively; also, φ is the prism angle and θ is the groove angle.  The 
incidence angle α and diffraction angle β are measured from GN, the grating normal. 

 

 The dispersion of a grating prism cannot be linear, owing to the fact that the 
dispersive effects of the prism are superimposed on those of the grating.  The 
following steps are useful in designing a grism:  
 

1. Select the prism material desired (e.g., BK-7 glass for 
visible light or fused silica for ultraviolet light). 

2. Obtain the index of refraction of the prism material for the 
straight-through wavelength. 
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3. Select the grating constant d for the appropriate dispersion 
desired. 

4. Determine the prism angle φ from Eq. (12-2). 

5. For maximum efficiency in the straight-through direction, 
select the grating from the Newport Diffraction Grating 
Catalog with groove angle θ closest to φ. 

 

 Design equations for grism spectrometers may be found in Traub.146  

12.4. GRAZING INCIDENCE SYSTEMS147 

 For work in the x-ray region (roughly the wavelength range 1 nm < λ < 
25 nm), the need for high dispersion and the normally low reflectivity of mate-
rials both demand that concave gratings be used at grazing incidence (i.e., 
|α| > 80°, measured from the grating normal).  Groove spacings of 600 to 1200 
per millimeter are very effective, but exceptional groove smoothness is required 
on these gratings to achieve good results. 

12.5. ECHELLES 

 A need has long existed for spectroscopic devices that give higher 
resolution and dispersion than ordinary gratings, but with a greater free spectral 
range than a Fabry-Perot étalon.  This need is admirably filled by the echelle 
grating, first suggested by Harrison.148  Echelles have been used in a number of 
applications  that require compact instruments with high angular dispersion and 
high throughput. 

                                                           
146 W. A. Traub, “Constant-dispersion grism spectrometer for channeled spectra,” J. Opt. Soc. Am. 
A7, 1779-1791 (1990). 
147 W. Cash, “Echelle spectrographs at grazing incidence,” Appl. Opt. 21, 710-717 (1982);  L. B. 
Mashev, E. K. Popov and E. G. Loewen, “Optimization of the grating efficiency in grazing 
incidence,” Appl. Opt. 26, 4738-4741 (1987);  L. Poletto, G. Tondello and P. Villoresi, “Optical 
design of a spectrometer-monochromator for the extreme-ultraviolet and soft x-ray emission of high-
order harmonics,” Appl. Opt. 42, 6367-6373 (2003). 
148 G. R. Harrison, “The production of diffraction gratings II: The design of echelle gratings and 
spectrographs,” J. Opt. Soc. Am. 39, 522-528 (1949). 
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 Echelles are a special class of gratings, with high groove spacings (i.e., a 
coarse groove pattern), used in high angles in high diffraction orders (rarely 
below |m| = 5, and sometimes used in orders beyond 100).  Because of order 
overlap, some type of filtering is normally required with higher-order grating 
systems.  This can take several forms, such as cut-off filters, detectors 
insensitive to longer wavelengths, or cross-dispersion in the form of prisms or 
low-dispersion gratings.  The latter approach leads to a square display format 
suitable for corresponding types of array detectors; with such a system a large 
quantity of spectroscopic data may be recorded simultaneously.149  First-order 
design principles for echelle spectrometers using a cross-disperser have been 
developed by Dantzler.150 
 As seen in Figure 12-3, an echelle looks like a coarse grating used at such a 
high angle (typically 63° from the normal) that the steep side of the groove 
becomes the optically active facet.  Typical echelle groove spacings are 31.6, 79 
and 316 g/mm, all blazed at 63°26' (although 76° is available for greater 
dispersion).  With these grating, resolving powers greater than 1,000,000 for 
near-UV wavelengths can be obtained, using an echelle 10 inches wide.  Corre-
spondingly high values can be obtained throughout the visible spectrum and to 
20 µm in the infrared.   
 Since echelles generally operate close to the Littrow mode and at the blaze 
condition, the incidence, diffraction and groove angles are equal (α = β = θ) and 
the grating equation becomes 

  mλ = 2d sinβ = 2d sinθ = 2t, (12-3) 

where t = d sinθ is the width of one echelle step (see Figure 12-3). 

 The free spectral range is 

  Fλ  = 
m
λ , (2-28) 

 

                                                           
149 D. Dravins, “High-dispersion astronomical spectrographs with holographic and ruled diffraction 
gratings,” Appl. Opt. 17, 404-414 (1978). 
150 A. A. Dantzler, “Echelle spectrograph software design aid,” Appl. Opt. 24, 4504-4508 (1985). 
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Figure 12-3.  Echelle geometry for use in the Littrow blaze condition.  The groove 
spacing d, step width t and step height s are shown.  The double-headed arrow indicates 
that the grating is used in the Littrow configuration (α = β), and β was chosen to equal 
the groove angle θ to satisfy the blaze condition.  GN is the grating normal and FN is the 
facet normal.  The blaze arrow (shown) points from GN toward FN. 

 

which can be very narrow for high diffraction orders.  From Equation (12-3), 
m = 2t/λ, so  

  Fλ = 
t2

2λ ; (12-4) 

for an echelle used in Littrow.  In terms of wavenumbers†, the free spectral 
range is 

  Fσ  = 
2λ
λΔ = 

t2
1 . (12-5) 

The linear dispersion of the spectrum is, from Eq. (2-16), 

                                                           
† A wavenumber is a unit proportional to inverse wavelength, and is often used in the infrared.  The 
definition of a wavenumber σ in inverse centimeters (cm–1) is σ = 10000/λ, where λ is expressed in 
μm. 
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where s = d cosβ = d cosθ is the step height of the echelle groove (see Figure 
12-3).   The dispersion of an echelle used in high orders can be as high as that of 
fine-pitch gratings used in the first order. 
 The useful length l of spectrum between two consecutive diffraction orders 
is equal to the product of the linear dispersion and the free spectral range: 

  
s

rl λ′
= . (12-7) 

For example, consider a 300 g/mm echelle with a step height s = 6.5 µm, 
combined with an r' = 1.0 meter focal length mirror, working at a wavelength of 
λ = 500 nm.  The useful length of one free spectral range of the spectrum is 
l = 77 mm. 
 Typically, the spectral efficiency reaches a peak in the center of each free 
spectral range, and drops to about half of this value at the ends of the range.  
Because the ratio λ/d is generally very small (<< 1) for an echelle used in high 
orders (m >> 1), polarization effects are not usually pronounced and scalar 
methods may be employed in many cases to compute echelle efficiency.151  
Echelle efficiency has been addressed in detail by Loewen et al.152 
 The steep angles and the correspondingly high orders at which echelles are 
used make their ruling much more difficult than ordinary gratings.  Periodic 
errors of ruling must especially be limited to a few nanometers or even less, 
which is attainable only by using interferometric control of the ruling engine.  
The task is made even more difficult by the fact that the coarse, deep grooves 
require heavy loads on the diamond tool.  Only ruling engines of exceptional 
rigidity can hope to rule echelles.  This also explains why the problems escalate 
as the groove spacing increases. 
                                                           
151 D. J. Schroeder and R. L. Hilliard, “Echelle efficiencies: theory and experiment,” Appl. Opt. 19, 
2833-2841 (1980);  B. H. Kleeman and J. Erxmeyer, “Independent electromagnetic optimization of 
the two coating thicknesses of a dielectric layer on the facets of an echelle grating in Littrow mount,” 
J. Mod. Opt. 51, 2093-2110 (2004). 
152 E. G. Loewen, D. Maystre, E. Popov and L. Tsonev, “Echelles: scalar, electromagnetic and real 
groove properties,” Appl. Opt. 34, 1707-1727 (1995);   E. G. Loewen, D. Maystre, E. Popov and L. 
Tsonev, “Diffraction efficiency of echelles working in extremely high orders,” Appl. Opt. 35, 1700-
1704 (1996); 
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 Echelles are often referred to by their "R numbers".  This number is the 
tangent of the blaze angle θ: 

  R number = tanθ = 
s
t  (12-8) 

(where s and t are shown in Figure 12-2).  An R2 echelle, for example, has a 
blaze angle of tan–1(2) = 63.4°; an R5 echelle has a blaze angle of tan–1(5) = 
78.7°. 
 
 

R number Groove angle 

R1 45.0° 

R2 63.4° 

R3 71.6° 

R3.5 74.1° 

R4 76.0° 

R5 78.7° 
 

Table of common R numbers.  The R number is simply the tangent of the groove angle. 

 

 Instruments using echelles can be reduced in size if the echelles are 
“immersed” in a liquid of high refractive index n (see Figure 12-4).  This has the 
effect of reducing the effective wavelength by n, which is equivalent to 
increasing the diffraction order, resolving power and dispersion of the echelle 
(compared with the same echelle that is not immersed).153  A prism is usually 
employed to couple the light to the grating surface, since at high angles most of 
the light incident from air to the high-index liquid would be reflected.   Often an 

                                                           
153 D. Enard and B. Delabre, “Two design approaches for high-efficiency low-resolution 
spectroscopy,” Proc. SPIE 445, 522-529 (1984);  G. Wiedemann and D. E. Jennings, “Immersion 
grating for infrared astronomy,” Appl. Opt. 32, 1176-1178 (1993). 
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antireflection (AR) coating is applied to the normal face of the prism to 
minimize the amount of energy reflected from the prism.154 
  

 

high index liquid

echelle grating 

incident light 
 
 
diffracted light 

prism AR coating 

 
Figure 12-4.  An immersed echelle grating used near Littrow.  In this example, the 
incident beam enters the prism normally at its face, so the prism contributes no angular 
dispersion to the grism (except for what little results from Snell’s Law when the 
diffracted ray leaves the prism). 

 

                                                           
154 C. G. Wynne, “Immersed gratings and associated phenomena. I,” Opt. Commun. 73, 419-421 
(1989);  C. G. Wynne, “Immersed gratings and associated phenomena. II,” Opt. Commun. 75, 1-3 
(1990). 
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1133..  APPLICATIONS OF DIFFRACTION 
GRATINGS    

 

 

13.1. GRATINGS FOR INSTRUMENTAL ANALYSIS 

 The most common use for the diffraction grating is to serve as the 
wavelength separation device in an analytical laboratory instrument in which 
matter is analyzed by studying its interaction with light (this analysis is called 
spectroscopy).  The spectral separation of the wavelengths is not strictly 
required for this interaction; instead its purpose is to provide data that can be 
interpreted unambiguously.   
 The techniques of analytical chemistry (i.e., that branch of chemistry that 
determines the chemical composition of a substance by measuring its physical 
properties) may be considered qualitative or quantitative.  A qualitative 
technique seeks to identify what is present; a quantitative technique seeks to 
determine how much is present.  Grating-based optical systems can be used to 
identify or to quantify, by using the properties of light that is absorbed or 
emitted by a substance (called absorption spectroscopy and emission 
spectroscopy, respectively). 
 Most instruments designed for absorption spectroscopy are composed of 
four primary elements (see Figure 13-1): a light source, a monochromator, a 
sample illumination system, and a detector.  Sometimes the monochromator and 
sample illumination system are interchanged (that is, some instruments disperse 
the light before it interacts with the sample, and some do this afterwards).  Some 
instruments use a spectrograph instead of a monochromator so that the entire 
spectrum may be recorded at once. 

13.1.1. Atomic and molecular spectroscopy 

 The field of atomic spectroscopy started with the observation by Balmer 
that the discrete spectral lines emitted by a hydrogen source in the ultraviolet 
had wavelengths that could be predicted by a simple formula; with the 
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development of quantum physics, the existence of a unique and predictable set 
of discrete emission (and absorption) wavelengths for each chemical element 
was hypothesized and subsequently observed.  We now defined atomic 
absorption spectroscopy as the measurement of the light absorbed by ionized 
atoms, and atomic emission spectroscopy as the measurement of light emitted 
by energized atoms or ions.  Both the wavelength and the intensity of the light 
can be measured using monochromators and spectrographs to provide 
information about the atomic species. 
 

 

 

Figure 13-1.  Absorption Spectrometer.  Light from a broad-spectrum source, such as 
deuterium (D2) or tungsten (W), is transmitted through the absorbing sample to be 
analyzed and focused through the entrance slit of a monochromator (or spectrograph), 
and the intensity of the light at each wavelength is recorded, producing an absorption 
spectrum.  In (a) the sample is illuminated by light after it has been spectrally tuned by 
the monochromator; in (b) the sample is illuminated by the broad spectrum. 

 
 Many atomic emission instrument use an inductively coupled plasma (ICP) 
composed of the atoms to be studied as the light source. 
 Molecular spectroscopy instrumentation is generally designed to transmit 
light through a molecular species (often in a liquid suspension) and measure the 
absorption at each wavelength.  
 Atomic and molecular spectroscopy is usually undertaken in the UV, visible 
and IR portions of the spectrum, since atomic and molecular transition energies 
lie in this range.  Generally one instrument will cover only a portion of this wide 
spectral range, leading to the classifications of UV spectrometers, UV-visible 
spectrometers, visible spectrometers and IR spectrometers.  
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 Both the wavelength and the intensity of the light can be measured using 
monochromators and spectrographs to provide information about the atomic 
species. 

13.1.2. Fluorescence spectroscopy 

 Many atomic and molecular species fluoresce; that is, they absorb energy in 
the UV-visible spectral region and rapidly emit most of that energy (the 
remainder being converted to heat or vibrational energy in the medium).  
Generally, this emission takes place on the order of nanoseconds after 
absorption, and (because of the energy loss) the emission spectrum will appear 
at higher wavelengths than the excitation spectrum (or, usually, a single 
excitation spectral line).  Fluorescent compounds may be identified by their 
unique fluorescence spectra; in some applications, a non-fluorescent material 
may be tagged with a fluorescent dye or fluorophore so that the non-fluorescent 
material may be detected using fluorescence instrumentation. 
 Fluorescence instrumentation generally contains an excitation 
monochromator, serving as a tunable filter for the excitation light, and an 
emission spectrometer to disperse the emission spectrum (see Figure 13-2).    

13.1.3. Colorimetry155 

 Colorimetry is the measurement and specification of color, used in 
analytical chemistry, color matching, color reproduction and appearance studies.  
Because color as perceived cannot be associated with a single wavelength – it is 
a more complicated function of how the three different light receptors in the 
human eye respond to the entire visible spectrum when looking at an object – it 
is common to use a multiwavelength instrument such as a grating spectrometer. 
 
 

                                                           
155 E.g., C. J. Kok and M. C. Boshoff, “New spectrophotometer and tristimulus mask colorimeter,” 
Appl. Opt. 10, 2617-2620 (1971);  T. H. Chao, S. L. Zhuang, S. Z. Mao and F. T. S. Yu, “Broad 
spectral band color image deblurring,” Appl. Opt. 22, 1439-1444 (1983). 
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Figure 13-2.  Fluorescence Spectrometer.  Light from a broad-spectrum source is 
spectrally tuned by an excitation monochromator; a spectrally narrow beam emerging 
from this monochromator is absorbed by the sample.  The fluorescence spectrum of the 
sample is viewed (generally at an angle perpendicular to the excitation beam) and 
resolved by an emission monochromator. 

13.1.4. Raman spectroscopy 

 The interaction of light with matter falls into two broad categories: 
absorption (on which absorption spectroscopy and fluorescence spectroscopy 
are based), and scattering.  Light can scatter elastically (i.e., energy is 
conserved) or inelastically – the latter is called Raman scattering, and the study 
of the spectrum of inelastically scattered light from matter is called Raman 
spectroscopy.  Since the ratio of intensities of inelastically scattered light to 
elastically scattered light is generally under 10–6, the reduction of instrumental 
stray light in Raman spectrometers is of paramount importance. 

13.2. GRATINGS IN LASER SYSTEMS 

 Diffraction gratings are also used in laser systems to perform a number of 
functions: to tune the lasing wavelength, to narrow the distribution of 
wavelengths in the laser, and to control the pulse shape (vs. time). 

Light 
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Sample Excitation 
Monochromator 

Detector 

Emission 
Monochromator 
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13.2.1. Laser tuning 

 Lasing media have characteristic gain curves that describe the lasing 
intensity vs. wavelength.  In order to “tune” the laser to a wavelength with 
higher gain with the gain curve, a grating can be used at one end of the resonant 
cavity (in place of a mirror); using a grating instead of a mirror will disperse the 
wavelengths in the laser, and the grating can be oriented so that the desired 
wavelength propagates back into the lasing medium.156   
 External-cavity semiconductor diode lasers are often used for their single-
mode operation and spectral tunability.  Plane reflection gratings can be used in 
the Littrow configuration to tune the lasing wavelength, as shown in Figure 13-
3, or in the grazing-incidence mount.   
 

 

 G 

dye laser cell 

OC

 
 

Figure 13-3.  Tuning a dye laser – the grating as a total reflector in the Littrow 
configuration.  Light from the dye laser cell is diffracted by the grating G, which is 
oriented so that light of the desired wavelength is redirected back toward the cell; the 
output beam is transmitted by an output coupler OC (which reflects most of the light 
back into the laser).  The wavelength is tuned by rotating the grating.  

 

In some systems a beam expander is used to illuminate a larger area on the 
grating surface, in order to achieve high resolution.  Since the grating will allow 
the zero-order to propagate as well as the (Littrow) diffraction order, the output 
beam may be taken from the grating as in Figure 13-4. 

                                                           
156 T. M. Hard, “Laser wavelength selection and output coupling by a grating,” Appl. Opt. 9, 1825-
1830 (1970);  A. Hardy and D. Treves, “Modes of a diffraction grating optical resonator,” Appl. Opt. 
14, 589-592 (1975);  T. W. Hänsch, “Repetitively pulsed tunable dye laser for high resolution 
spectroscopy,” Appl. Opt. 11, 895-898 (1971);  S. O. Kanstad & G. Wang, “Laser resonators folded 
by diffraction gratings,” Appl. Opt. 17, 87-90 (1978). 
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 Grazing-incidence tuning with one grating associated with a mirror (or a 
second grating) can also be used to tune dye lasers without the need for a beam 
expander, leading to a more compact laser cavity; this is called the Littman-
Metcalf design157  and is shown in Figure 13-5.  

 
 

 
 

Figure 13-4.  Tuning a dye laser – the grating as output reflector.  In this case, the zero-
order from the grating G is the output beam, and the output coupler in Figure 13-3 is 
replaced by a mirror. The wavelength is tuned by rotating the grating. 

 

 G 

dye laser cell 

OC

M
 

Figure 13-5.  The Littman-Metcalf arrangement.  The light diffracted by grating G is 
retroreflected by mirror M, which diffracts the light again back into the dye laser cell. 

 

                                                           
157 M. G. Littman and H. J. Metcalf, “Spectrally narrow pulsed dye laser without beam expander,” 
Appl. Opt. 17, 2224-2227 (1978). 
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 Molecular lasers, operating in either a pulsed or continuous-wave (cw) 
mode, have their output wavelength tuned by Littrow-mounted gratings.  High 
efficiency is obtained by using the first diffraction order at diffraction angles 
|β | > 20°.  The output is polarized in the S-plane, since the efficiency in the P 
plane is quite low.   
 Some molecular lasers operate at powers high enough to destroy gratings.  
For pulsed laser tuning, extra-thick replica films may help, but at maximum 
power only master gratings survive.  Due to their far greater thermal 
conductivity, replica gratings on metal substrates are superior to glass for cw 
laser applications; in some cases, the grating substrates must be water-cooled to 
prevent failure. 
 Excimer lasers – used in surgery, micromachining and photolithography – 
generally select a narrow spectral range from the emission profile by using an 
echelle grating in the Littrow configuration.158  A coarse echelle (d > 10 μm) is 
used in very high diffraction orders (m >> 10) at very high incidence angles (α 
= 65° to 79°) in order to obtain high dispersion (see Eq. (2-15)).  At such an 
oblique angle, a beam with circular cross section will illuminate an ellipse on 
the grating that is three to five times wider in the dispersion direction than it is 
in the cross-dispersion direction. 

13.2.2. Pulse stretching and compression159 

 For optical systems employing lasers with very high peak powers, such as 
those that use temporally short (< 1 ps) yet energetic (≈ 1 J) pulses, the required 
damage thresholds of the optical components in the system can exceed the 
performance of state-of-the-art components.  Strickland and Mourou160 
demonstrated that such pulses can be stretched (in time) so that their pulse 
energy is spread out over a large time period (thereby reducing the peak power) 
and then compressed using a grating compressor to return the pulse to its 
original temporal profile.  Between the two operation (stretching and 

                                                           
158 R Buffa, P Burlamacchi, R Salimbeni and M Matera, “Efficient spectral narrowing of a XeCl 
TEA laser,” J. Phys. D: Appl. Phys. 16 L125-L128 (1983);  J. P. Partenen, “Multipass grating 
interferometer applied to line narrowing in excimer lasers,” Appl. Opt. 25, 3810-3815 (1986). 
159 E. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Elec. 5, 454-
458 (1969). 
160 D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Comm. 
56, 219-221 (1985). 
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compression), optical components are exposed to much lower peak powers than 
that of the original (or final) pulse.  By amplifying the pulse between the 
stretcher and compressor, higher peak power pulses may be obtained.   
 A dual-grating pulse stretcher is shown in Figure 13-6. 

 

 

 G2

M

G1

 
Figure 13-6.  A grating-based pulse stretcher.  Intermediate lenses are not shown. 

13.3. GRATINGS IN ASTRONOMICAL APPLICATIONS 

 Much of what we know of the universe is due to our analysis of light 
reaching the earth from planets, stars and galaxies.  Grating-based spectrometers 
play a key role in astronomical measurements.  For example, the spectroscopic 
analysis of starlight allows us to determine the composition of stars as well as 
their relative velocities.  The analysis of absorption lines in starlight that passes 
through nebulae allows us to determine the composition of the nebulae.  From 
the analyses of these emission and absorption spectra, we can infer ages of stars, 
distances to galaxies, etc. 

13.3.1. Ground-based astronomy161 

 Ground-based astronomical telescopes generally have quite large apertures, 
to maximize the light energy collected from distant astronomical objects; this 

                                                           
161 E.g., W. Liller, “High dispersion stellar spectroscopy with an echelle grating,” Appl. Opt. 9, 
2332-2336 (1970);  D. J. Schroeder, Astronomical Optics, Academic Press (San Diego, California: 
1987).   



 

 207

leads to the need for very large gratings to spectrally disperse the light received.  
Often these gratings are so large that their resolving power exceeds the value for 
which the spectrometer’s resolution would be grating-limited; that is, in most 
cases the grating is ‘better’ than the instrument’s resolution requires. 
 Newport’s 'B' engine can rule large echelles and echellettes up to 320 mm x 
420 mm in size (which provides a ruled area of 308 mm x 408 mm), suitable for 
all but the largest ground-based astronomical instruments.162  The requirement 
for even larger gratings for ground-based astronomical telescopes has led to 
three alternative solutions: a static fixture to hold smaller gratings in a larger 
configuration, an adjustable fixture with optical feedback to move the gratings 
with respect to each other (to maintain focus)163, and a mosaic grating produced 
by high-accuracy multiple replication onto a single substrate.164  Such 
monolithic mosaic gratings have the advantage of long-term alignment stability 
over the other two alternatives. 
 In the 1990s, Newport developed the capability to replicate two large 
submaster gratings onto one monolithic substrate.  Except for a “dead space” 
between the two replicated areas, the entire face of the larger product substrate 
contains the groove pattern.  This mosaic grating must have its two grating areas 
aligned to very high accuracy if the mosaic is to perform as one high-quality 
grating.  Typical specifications for two 308 mm x 408 mm ruled areas on a 320 
mm x 840 mm substrate are one arc second alignment of the groove directions, 
one arc second tilt between the two faces, and one micron displacement between 
the two grating planes.  
 A large mosaic echelle grating produced by Newport for the European 
Southern Observatory is shown in Figure 13-7.  Two submasters from Newport 
master MR160 (a 31.6 g/mm echelle blazed at 75.1°) were independently 
replicated onto a large monolithic substrate to form this mosaic grating; the two 
halves of its surface are clearly seen in the photograph.   

                                                           
162 S. S. Vogt and G. D. Penrod, “HiRES: A high resolution echelle spectrometer for the Keck 10-
meter telescope,” in Instrumentation for Ground-Based Astronomy, L. B. Robinson, ed. (Springer-
Verlag, New York: 1988), pp. 68-103. 
163 G. A. Brealey, J. M. Fletcher, W. A. Grundmann and E. H. Richardson, “Adjustable mosaic 
grating mounts,” Proc. SPIE 240, 225-228 (1980). 
164 H. Dekker and J. Hoose, “Very high blaze angle R4 echelle mosaic,” Proc. ESO Workshop on 
High Resolution Spectroscopy, M.-H. Ulrich, ed., p. 261 (1992);   J. Hoose et al., "Grand Gratings: 
Bigger is Better, Thanks to Mosaic Technology," Photonics Spectra 29, 118-120 (December 1995);  
T. Blasiak and S. Zheleznyak, "History and construction of large mosaic diffraction gratings," Proc. 
SPIE 4485, 370-377 (2002). 
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 Figure 13-8 shows a six-inch aperture Fizeau interferogram of an echelle 
mosaic (31.6 g/mm) in the m = 98th order, tested at λ = 632.8 nm.  The grooves 
are vertical in the photos and the blaze arrow is facing left.  One fringe over this 
aperture is 0.43 arc seconds.  These measurements indicate that the two sides of 
the mosaic are aligned to 0.3 arc seconds. 
 Figure 13-9 shows a focal plane scan on a ten-meter optical test bench 
using a mode-stabilized HeNe laser (λ = 632.8 nm) as the light source.  The 
entrance slit width is 25 microns, and the exit slit is opened just enough to get 
signal through.  The grating is operating in the m = 97th order with full aperture 
illumination.  The image seems to be dominated by the wavefront characteristics 
of the individual segments, but still indicates a system resolving power better 
than R = 900,000. 
 
 

 
 

Figure 13-7.  A large mosaic grating.  A monolithic 214 x 840 mm replica mosaic 
grating was produced from two 214 x 415 mm submasters.  
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Figure 13-8.  Six-inch-aperture Fizeau interferograms of a 31.6 g/mm echelle mosaic 
produced from two 214 x 415 mm submasters.  The photograph on the left shows 
alignment perpendicular to the grooves; that on the right shows alignment in the direction 
of the grooves.  These interferograms were taken in the 98th diffraction order. 
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Figure 13-9.  Signal trace of a 31.6 g/mm echelle mosaic at 632.8 nm in the 97th order.   
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13.3.2. Space-borne astronomy165 

 Neither master nor replica gratings suffer in any measurable way over ex-
tended periods of time in a space environment.  The advantage of replica 
gratings lies not only in their greater availability and lower cost, but in making 
possible the provision of exact duplicates whenever needed. 
 Since most space work involves the study of ultraviolet (UV) and extreme 
ultraviolet (EUV) wavelengths, special problems exist in setting and aligning 
the optics.  For this purpose Newport can rule gratings matching the EUV 
grating but with a groove spacing modified so that the mercury 546.1-nm line 
lies in the spectrum just where the main wavelength under study will lie.  
Another possibility is to rule a small section on the main grating with similar 
coarse spacings and then mask off this area when the alignment is complete.  
Sometimes special tolerances on substrate radii are required for complete 
interchangeability. 

13.4. GRATINGS IN SYNCHROTRON RADIATION BEAMLINES 

 Synchrotron radiation is generated by electrons traveling in circular orbits 
at relativistic speeds; this radiation covers the x-ray through infrared portions of 
the electromagnetic spectrum and may be used to investigate the electronic 
properties of matter.  Synchrotron beamlines are optical systems oriented 
tangentially to synchrotron rings, and often gratings are used to disperse the 
portion of the radiation in the extreme ultraviolet (UV) and vacuum ultraviolet 
(VUV) spectra.166   

                                                           
165 E.g., J. F. Seely, M. P. Kowalski, W. R. Hunter, T. W. Barbee Jr., R. G. Cruddace and J. C. Rife, 
“Normal-incidence efficiencies in the 115-340-Å wavelength region of replicas of the Skylab 3600-
line/mm grating with multilayer and gold coatings,” Appl. Opt. 34, 6453-6458 (1995). 
166 D. L. Ederer, ed., Selected Papers on VUV Synchrotron Radiation Instrumentation – Beam Line 
and Instrument Development, SPIE Milestone Series vol. MS 152, SPIE (Bellingham, Washington: 
1998). 
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13.5. SPECIAL USES FOR GRATINGS 

 In addition to the “traditional” uses of gratings – in analytical instruments, 
lasers and astronomical telescopes – there are a number of other uses for which 
diffraction gratings are well-suited. 

13.5.1. Gratings as filters 

 Diffraction gratings may be employed as reflectance filters when working 
in the far infrared, in order to remove the unwanted second- and higher- 
diffraction orders from the light.167  For this purpose, small plane gratings are 
used that are blazed for the wavelength of the unwanted shorter-wavelength 
radiation.  The grating acts as a mirror for the longer-wavelength light, 
reflecting the desired light into the instrument, while diffracting shorter wave-
lengths out of the optical path.  The groove spacing d must be chosen so that   

  ⎢sinβ ⎢> 1  for all λ > λC, (13-1) 

where λC is a wavelength between the short wavelengths to be diffracted and the 
long wavelengths to be reflected (see Eq. (2-1)). 
 A grating can also be used as a color filter if it is illuminated such that its 
zero-order efficiency is highly wavelength-dependent.168   
 It should be recognized that a diffraction grating by itself cannot serve as a 
spectral bandpass filter.  The grating provides spectral dispersion but not 
spectral resolution, so the analogue of a thin-film filter designed to pass a 
narrow spectral band would be the combination of a grating and a slit (see 
Figure 13-10).  A grating monochromator (as described in Chapter 3) may be 
thought of as a tunable filter – rotating the grating tunes the central wavelength 
in the transmitted spectral band, and the exit slit serves to narrow this band. 

                                                           
167 J. U. White, “Gratings as broad band filters for the infra-red,” J. Opt. Soc. Am. 37, 713-717 
(1947). 
168 K. Knop, “Diffraction gratings for color filtering in the zero diffraction order,” Appl. Opt. 17, 
3598-3603 (1978). 
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13.5.2. Gratings in fiber-optic telecommunications 

 In the late 1990s, surface-relief diffraction gratings became widely used in 
two types of equipment for fiber-optic telecommunications networks operating 
in the 1.3–1.7 μm wavelength range.  While other wavelength selective tech-
nologies exist (e.g., interference filters, fiber Bragg gratings and array 
waveguide gratings), the cost advantage of surface-relief gratings becomes 
significant as the channel count increases, since a system with N channels  
requires N–1 filters but only a single grating; that is, the filters must act in series 
(in a cascade arrangement) but the grating acts on all channels in parallel. 
Moreover, as N increases, the spectral bandpass of the filters must decreases, 
further increasing their cost. 
 
 

 
 

Figure 13-10.  Spectral resolution using a grating and a slit.  Polychromatic light 
incident on and diffracted by the grating G is not spectrally resolved; the grating merely 
diffracts each wavelength in the incident beam in a different direction.  A spectral narrow 
band Δλ is obtained by using exit slit XS to prevent all wavelengths outside this band 
from passing to the detector. 

 
 Multiplexers & Demultiplexers.169  A multiplexer (see Figure 13-11(a)) is a 
component in a fiber-optic network that combines many input channels into one 
output channel; as the input channels have different wavelengths, the 
multiplexer can be considered a spectrograph used in reverse.  A demultiplexer  
(Figure 13-11(b))  separates many wavelengths in a single input channel so that 

                                                           
169 T. Kita and T. Harada, “Use of aberration-corrected concave gratings in optical demultiplexers,” 
Appl. Opt. 22, 819-825 (1983). 
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each is transmitted into a unique output channel (this is functionally equivalent 
to a spectrograph).  Multiplexers and demultiplexers may be employed together 
to produce add-drop routers. 
 

 

 
Figure 13-11.  Fiber-optic network components.  (a) Multiplexer: many input beams 
(each of a unique wavelength) are combined to propagate down the same output path.  
(b) Demultiplexer: the several signals in the (combined) input beam are separated by 
wavelength.  For simplicity, only four wavelengths are shown. 

 

 Optical Spectrum Analyzers.  In addition to serving in network components, 
gratings are used in optical spectrum analyzers which use a small fraction of the 
light in the network to monitor the intensity and stability of each channel.  These 
systems are essentially spectrographs, and may use plane or concave gratings. 

13.5.3 Gratings as beam splitters 

 Gratings can be used as beam splitters in conjunction with Moiré fringe ap-
plications or interferometers.  Under normal illumination (α = 0), a grating with 
a symmetric groove profile will diffract both first-order beams with equal 
intensity.  A diffraction grating used as a beam divider provides higher 
efficiencies when its groove profile is rectangular, whereas a grating used for 
spectroscopic purposes should have a sinusoidal or triangular groove profile. 
 Transmission gratings can be used as two-beam splitters (where the zero-
order beam has negligible efficiency or is otherwise trapped), three-beam 
splitters (where the groove profile is chosen so that the zero-order beam has the 
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same intensity as the two first-order beams), or for multiple beam sampling, 
depending on the choice of groove profile.170 

13.5.4 Gratings as optical couplers 

 Gratings can be used to couple light into and out of waveguide 
structures.171  Generally the groove spacing d is specifically chosen to ensure 
that only one  diffraction order (other than the zero order) propagates. 

13.5.5 Gratings in metrological applications 

 Diffraction gratings can be employed in a variety of metrological 
applications.  The precise microscopic surface-relief pattern can be used to 
calibrate atomic force microscopes (AFMs).  Gratings can also be used in 
systems designed to measure displacement172 and strain.173 
 

                                                           
170 E. G. Loewen, L. B. Mashev and E. K. Popov, “Transmission gratings as 3-way beam splitters,” 
Proc. SPIE 815, 66-72 (1987);  E. K. Popov, E. G. Loewen and M. Nevière, "Transmission gratings 
for beam sampling and beam splitting," Appl. Opt. 35, 3072-3075 (1996);  E. G. Loewen and E. 
Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997), ch. 5. 
171 T. Tamir and S. T. Peng, “Analysis and design of grating couplers,” Appl. Phys. 14, 235-254 
(1977). 
172 J.-A. Kim, K.-C. Kim, E. W. Bae, S. Kim and Y. K. Kwak, “Six-degree-of-freedom displace- 
ment measurement using a diffraction grating,” Rev. Sci. Instrum. 71, 3214-3219 (2000). 
173 B. Zhao and A. Asundi, ”Strain microscope with grating diffraction method,” Opt. Eng. 38, 170-
174 (1999). 
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14. ADVICE TO GRATING USERS      
 

. 

14.1. CHOOSING A SPECIFIC GRATING 

 If a diffraction grating is to be used only to disperse light by wavelength 
(rather than provide focusing as well), then choosing the proper grating is often 
a straightforward matter involving the specification of the blaze angle and 
groove spacing.  In other instances, the problem is one of deciding on the 
spectrometric system itself.  The main parameters that must be specified are 
 

• Spectral region (wavelength range) 

• Wavelength of peak efficiency 

• Speed (focal ratio) or throughput 

• Resolution or resolving power 

• Dispersion 

• Free spectral range 

• Output optics 

• Size limitations 
 

 The spectral region, spectral resolution and size requirements will usually 
lead to a choice of plane vs. concave design, as well as the coating (if the grating 
is reflecting).  The size and weight of the system, the method of receiving output 
data, the intensity, polarization and spectral distribution of the energy available, 
etc., must also be considered.  The nature of the detection system, especially for 
array detectors, plays a major role in system design: its size, resolution, and 
image field flatness are critical issues in the specification of the optical system, 
and the sensitivity (vs. wavelength) of the detector will lead to a grating 
efficiency vs. wavelength specification. 
 Spectral resolution depends on many aspects of the optical system and the 
quality of its components.  In some cases, the grating may be the limiting 
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component (see Section 8.3).  The decision here involves the size of the grating 
and the angle at which it is to be used, but not on the number of grooves on the 
grating or the groove spacing (see Chapter 2). 
 Speed (or throughput) determines the focal length as well as the sizes of the 
optical elements and of the system itself.  Special overcoatings become 
important in certain regions of the spectrum, especially the vacuum ultraviolet.   
 When thermal stability is important, gratings should be made on a low 
expansion material, such as ZeroDur™ or ULE® fused silica. 
 Guidelines for specifying gratings are found in Chapter 16. 

14.2. APPEARANCE 

 In the early days of diffraction grating manufacture, R.W. Wood remarked 
that the best gratings were nearly always the worst ones in their cosmetic or 
visual appearance.  While no one would go so far today, it is important to 
realize that a grating with certain types of blemishes may well perform better 
than one that appears perfect to the eye.   

14.2.1. Ruled gratings   

 Cosmetic defects on ruled gratings may be caused by small droplets of 
metal or oxide that have raised the ruling diamond, or streaks may be caused by 
temporary adhesion of aluminum to the sides of the diamond tool.  On ruled 
concave gratings, one can usually detect by eye a series of concentric rings 
called a target pattern.  It is caused by minor changes in tool shape as the 
diamond swings through the arc required to rule on a curved surface.  Every 
effort is made to reduce the visibility of target patterns to negligible proportions. 
 Some ruled master gratings have visible surface defects.  The most common 
sort of defect is a region of grooves that are burnished too lightly (in relation to 
the rest of the grating surface).  While readily seen with the eye, such a region 
has little effect on spectroscopic performance. 
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14.2.2 Holographic gratings   

 Holographic gratings are susceptible to a different set of cosmetic defects.  
Comets are caused by specks on the substrate; when the substrate is rotated 
(spun) as the photoresist is applied, these specks cause the photoresist to flow 
around them, leaving comet-like trails.  Artifacts created during the recording 
process are also defects; these are holograms of the optical components used in 
the recording of the grating.   

14.3. GRATING MOUNTING 

 The basic rule of mounting a grating is that for any precise optical element: 
its shape should not be changed accidentally through excessive clamping 
pressure.  This problem can be circumvented by kinematic (three-point) 
cementing, using a nonrigid cement, or by supporting the surface opposite the 
point where clamping pressure is applied. 
 If a grating is to be mounted from the rear, the relative orientations of the 
front and rear surfaces is more important than if the grating is to be mounted 
from the front.  Front-mounting a plane grating, by contacting the mount to the 
front surface of the grating (near the edge of the grating and outside the free 
aperture), allows the cost of the substrate to be lower, since the relative 
parallelism of the front and back surfaces need not be so tightly controlled. 

14.4. GRATING SIZE 

 Grating size is usually dictated by the light throughput desired (and, in the 
case of concave gratings, imaging and instrument size limitations as well).  
Should none of the standard substrate sizes listed in the Newport Diffraction 
Grating Catalog be suitable to match an instrument design, these same gratings 
can be supplied on special size substrates.  Special elongated substrate shapes 
are available for echelles and laser tuning gratings. 
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14.5. SUBSTRATE MATERIAL 

 The standard material for small and medium-sized grating substrates is 
specially annealed borosilicate crown glass (BK-7).  Low-expansion material, 
such as ZeroDur® or fused silica, can be supplied upon request.  For large 
gratings (approximately 135 x 265 mm or larger), low-expansion material is 
standard; BK-7 can be requested as well.  For certain applications, it is possible 
to furnish metal substrates (e.g., copper or aluminum) that are good heat sinks. 

14.6. GRATING COATINGS 

 While evaporated aluminum is the standard coating for reflection gratings, 
fast-fired aluminum with overcoatings of magnesium fluoride (MgF2) can be 
used to enhance efficiency in the spectrum between 120 and 160 nm.  For the 
extreme ultraviolet (below 50 nm), gold replica gratings are recommended, 
while platinum is recommended for 80–110 nm.  Gold replicas also have higher 
reflectivity in most regions of the infrared spectrum, and are particularly useful 
for fiber-optic telecommunications applications in the S, C and L (infrared) 
transmission bands.† 

                                                           
† The transmission bands used in fiber-optic telecommunications are usually defined as follows: S 
(short) band: c. 1435 to 1535 nm, C (conventional) band: c. 1525 to 1565 nm, and L (long) band: c. 
1565 to 1630 nm.  These definitions are by no means universal, but between them they cover the 
near-IR amplification range of erbium-doped optical fibers. 
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15. HANDLING GRATINGS     
 

 

 

   A diffraction grating is a first surface optic, so its surface cannot be 
touched or otherwise come in contact with another object without damaging it 
and perhaps affecting its performance.  Damage can take the form of 
contamination (as in the adherence of finger oils) or distortion of the 
microscopic groove profile in the region of contact.  This chapter describes the 
reasons why a grating must be handled carefully and provides guidelines for 
doing so.  

15.1. THE GRATING SURFACE 

 Commercially available diffraction gratings are replicated optics comprised 
of three layers: a substrate, a resin layer, and (usually) a reflective coating (see 
Chapter 5).  Each layer serves a different purpose: (1) the metallic layer 
provides high reflectivity, (2) the resin layer holds the groove pattern and 
groove profile, and (3) the substrate (usually glass) keeps the optical surface 
rigid. 

15.2. PROTECTIVE COATINGS 

 Since the groove profile is maintained by the resin layer, rather than the 
reflective (metallic) coating on top of it, protective coatings such as those that 
meet the military specification MIL-M-13508 (regarding first-surface aluminum 
mirrors) do not serve their intended purpose.  Even if the aluminum coating 
itself were to be well-protected against contact damage, it is too thin to protect 
the softer resin layer underneath it.  “Fully cured" resin is not very hard, 
resembling modeling clay in its resistance to contact damage.  Consequently 
gratings are not provided with contact-protecting coatings. 
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Figure 15-1. Composition of a replica diffraction grating. A section of a standard blazed 
grating with an aluminum coating is shown.  Layer thicknesses are not shown to scale: 
generally the aluminum film thickness is about 1 μm, and the resin layer is between 10 
and 50 μm, depending on groove depth and grating size; the substrate thickness is usually 
between 3 and 100 mm.  

15.3. GRATING COSMETICS AND PERFORMANCE 

 Warnings against touching the grating surface notwithstanding, damage to 
the surface occasionally occurs.  Contact from handling, mounting or packaging 
can leave permanent visible marks on the grating surface.  Moreover, some 
gratings have cosmetic defects that do not adversely impair the optical 
performance, or perhaps represent the best available quality for a grating with a 
particular set of specifications.  For example, some gratings have 'worm tracks' 
due to mechanical ruling of the master grating from which the replicated grating 
was taken, others have coating defects like spit or spatter, and others have 
'pinholes' (tiny voids in the reflective coating), etc.  The many possible 
classifications of surface defects and the many opportunities to render the 
surface permanently damaged conspire to make the surfaces of many gratings 
look less than cosmetically perfect. 
 While this damage may be apparent upon looking that the grating, it is not 
straightforward to determine the effect this damage has on the performance of 
the grating.  Often the area affected by damage or contamination is a small 
fraction of the total area of the grating.  Therefore, only a small portion of the 
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total number of grooves under illumination may be damaged, displaced or 
contaminated.  A damaged or contaminated region on the surface of a grating 
may have little, if any, noticeable effect on the performance of the optical 
system, because a diffraction grating is usually used as an integrating optic 
(meaning that all light of a given wavelength diffracted from the grating surface 
is brought to focus in the spectral order of interest).  In contrast, a lens or mirror 
that does not focus (say, an eyeglass lens or a bathroom mirror) will show a 
distortion in its image corresponding to the damaged region of the optic.  This 
familiar experience – the annoying effect of a chip on an eyeglass lens or a 
smudge on a bathroom mirror – has led many to assume that a similar defect on 
the surface of a grating will lead to a similar deficiency in performance.  The 
most appropriate performance test of a grating with surface damage or cosmetic 
defects is not visual inspection but instead to use the grating in its optical system 
and determine whether the entire system meets its specifications.  
 Damage to a region of grooves, or their displacement, will theoretically 
have some effect on the efficiency of the light diffracted from that region, as 
well as the total resolving power of the grating, but in practice such effects are 
generally not noticeable.  Of more concern, since it may be measurable, is the 
effect surface damage may have on light scattered from the grating, which may 
decrease the signal-to-noise (SNR) of the optical system.  Most forms of surface 
damage can be thought of as creating scattering centers where light that should 
be diffracted (according to the grating equation) is scattered into other directions 
instead.  

15.4. UNDOING DAMAGE TO THE GRATING SURFACE 

 Damage to the microscopic groove profile is, unfortunately, irreversible; 
the resin layer, like modeling clay, will retain a permanent imprint. 
Contamination of the grating surface with finger oils, moisture, vacuum pump 
oil, etc. is also often permanent, particularly if the contaminated grating surface 
has been irradiated.   
 Sometimes surface contamination can be partially removed, and once in a 
while completely, using a mild unscented dishwashing liquid.  Care should be 
taken not to apply any pressure (even gentle scrubbing) to the grating surface. If 
contaminants remain, try using spectroscopic-grade solvents; the purity of such 
solvents should be ascertained before use, and only the purest form available 
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used.  The use of carbon dioxide (CO2) snow,174 which reaches the grating 
surface in a sublimed state and evaporates, carrying with it the contaminants, 
has also been used with some success.  The key to cleaning a grating surface is 
to provide no friction (e.g., scrubbing) that might damage the delicate groove 
structure. 

15.5. GUIDELINES FOR HANDLING GRATINGS  

• Never touch the grooved surface of a diffraction grating. Handle a 
grating by holding it by its edges.  If possible, use powder-free gloves 
while handling gratings.  

• Never allow any mount or cover to come in contact with the grooved 
surface of a diffraction grating.  A grating that will be shipped should 
have its surface protected with a specially-designed cover that does not 
touch the surface itself.  Gratings that are not in use, either in the 
laboratory or on the manufacturing floor, should be kept in a closed 
box when not covered.  Keep any oils that may be used to lubricate 
grating mount adjustments away from the front surface of the grating.  

• Do not talk or breathe over the grooved surface of a diffraction 
grating.  Wear a nose and face mask when it is required that you talk 
over the surface of a grating.  Breath spray is particularly bad for 
reflection gratings, so one should not speak directly over the grating 
surface; instead, either turn away or cover the mouth (with the hand or 
a surgical mask).  

 

 

                                                           
174 R. R. Zito, “Cleaning large optics with CO2 snow,” Proc. SPIE 1236, 952-972 (1990). 
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16. GUIDELINES FOR SPECIFYING 
GRATINGS  

 

 

 

   Proper technical specifications are needed to ensure that the part supplied 
by the manufacturer meets the requirements of the customer. This is especially 
true for diffraction gratings, whose complete performance features may not be 
fully recognized.  Documents that provide guidance in the specification of 
optical components, such as the ISO 10110 series ("Optics and optical 
instruments: Preparation of drawings for optical elements and systems"), do not 
clearly lend themselves to the specification of diffraction gratings.  This chapter 
provide guidelines for generating clear and complete technical specifications for 
gratings. 

 Specifications should meet the following criteria. 

• They should refer to measurable properties of the grating.  

• They should be as objective as possible (avoiding judgment or 
interpretation).  

• They should be quantitative where possible.  

• They should employ common units where applicable (the SI system is 
preferred).  

• They should contain tolerances.  

A properly written engineering print for a diffraction grating will be clear and 
understandable to both the customer and the manufacturer. 

16.1. REQUIRED SPECIFICATIONS 

 All grating prints should contain, at a minimum, the following 
specifications. 

 

1. Free Aperture. The free aperture, also called the clear aperture, of a 
grating is the maximum area of the surface that will be illuminated. The 
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free aperture is assumed to be centered within the ruled area (see 
below) unless otherwise indicated.  For configurations in which the 
grating will rotate, such as in a monochromator, it is important to 
specify the free aperture as the maximum dimensions of the beam on 
the grating surface (i.e., when the grating is rotated most obliquely to 
the incident beam).  Also, it is important to ensure that the free aperture 
specifies an area that is completely circumscribed by the ruled area, so 
that the illuminated area never includes part of the grating surface that 
does not have grooves. 

The free aperture of the grating is that portion of the grating surface for 
which the optical specifications apply (e.g., Diffraction Efficiency, 
Wavefront Flatness or Curvature, Scattered Light – see below). 

2. Ruled Area.  The ruled area of a grating is the maximum area of the 
surface that will be covered by the groove pattern. The ruled area is 
assumed to be centered on the substrate face unless otherwise 
indicated.  By convention, the ruled area of a rectangular grating is 
specified as "groove length by ruled width" – that is, the grooves are 
parallel to the first dimension; for example, a ruled area of 30 mm x 50 
mm indicates that the grooves are 30 mm long. 

Most rectangular gratings have their grooves parallel to the shorter 
substrate dimension. For gratings whose grooves are parallel to the 
longer dimension, it is helpful to specify "long lines" to ensure that the 
grooves are made parallel to the longer dimension. 

3. Substrate Dimensions.  The substrate dimensions (width, length, and 
thickness) should be called out, as should their tolerances.  If the 
grating is designed to be front-mounted, the substrate specifications 
can be somewhat looser than if the grating surface will be positioned or 
oriented by the precise placement of the substrate.  Front-mounting a 
grating generally reduces its cost and production time (see Alignment 
below). 

A grating substrate should have bevels on its active face, so that it is 
easier to produce and to reduce chipping the edges while in use.  Bevel 
dimensions should be specified explicitly and should be considered in 
matching the Ruled Area (above) with the substrate dimensions.† For 
custom (special-size) substrates, certain minimum bevel dimensions 

                                                           
† Newport’s standard bevels have a face width of 1.5 mm and are oriented at 45° to the two edges. 
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may be required to ensure that the grating is manufacturable – please 
contact us for advice. 

4. Substrate Material. The particular substrate material should be 
specified.  If the material choice is of little consequence, this can be left 
to the manufacturer, but especially for applications requiring substrates 
with low thermal expansion coefficients, or requiring gratings that can 
withstand high heat loads, the substrate material and its grade should 
be identified.  For transmission gratings, the proper specification of the 
substrate material should include reference to the fact that the substrate 
will be used in transmission, and may additionally refer to 
specifications for refractive index, inclusions, bubbles, striae, etc.  

5. Nominal Surface Figure.  Plane (flat) gratings should be specified as 
being planar; concave gratings should have a radius specified, and the 
tolerance in the radius should be indicated in either millimeters or 
fringes of red HeNe light (λ = 632.8 nm) (a "wave" being a single 
wavelength, equaling 632.8 nm, and a "fringe" being a single half-
wavelength, equaling 316.4 nm).  Deviations from the nominal surface 
figure are specified separately as "wavefront flatness" or "wavefront 
curvature" (see below). 

6. Wavefront Flatness or Curvature.  This specification refers to the 
allowable deviation of the optical surface from its Nominal Surface 
Figure (see above).  Plane gratings should ideally diffract plane 
wavefronts when illuminated by collimated incident light. Concave 
gratings should ideally diffract spherical wavefronts that converge 
toward wavelength-specific foci.  In both cases, the ideal radius of the 
diffracted wavefront should be specified (it is infinite for a plane 
grating) and maximum deviations from the ideal radius should also be 
called out (e.g., the tolerance in the radius, higher-power irregularity in 
the wavefront).  It is important to specify that grating wavefront testing 
be done in the diffraction order of use if possible, not in zero order, 
since the latter technique does not measure the effect of the groove 
pattern on the diffracted wavefronts.  Deviations from a perfect 
wavefront are most often specified in terms of waves or fringes of red 
HeNe light.  Generally, wavefront is specified as an allowable 
deviation from the nominal focus ("power") and allowable higher-order 
curvature ("irregularity"). 
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7. Groove Spacing or Frequency.  The number of grooves per millimeter, 
or the spacing between adjacent grooves, should be specified, but not 
both (unless one is subjugated to the other by labeling it as 
"reference").  For a grating whose groove spacing varies across the 
surface (e.g., an aberration-corrected concave holographic grating), the 
groove spacing (or frequency) is generally specified at the center of the 
grating surface. 

8. Groove Alignment.  Alignment refers to the angle between the groove 
direction and an edge of the grating substrate.  Sometimes this angular 
tolerance is specified as a linear tolerance by stating the maximum 
displacement of one end of a groove (to an edge) relative to the other 
end of the groove.  Generally a tight alignment specification increases 
manufacturing cost; it is often recommended that alignment be allowed 
to be somewhat loose and that the grating substrate dimensions not be 
considered for precise alignment but that the grating surface be 
oriented and positioned optically instead of mechanically (see 
comments in Substrate Dimensions above). 

9. Diffraction Efficiency.  Grating efficiency is generally specified as a 
minimum at a particular wavelength; often this is the peak wavelength 
(i.e., the wavelength of maximum efficiency).  Occasionally efficiency 
specifications at more than one wavelength are called out.   

Either relative or absolute diffraction efficiency should be specified.   
Relative efficiency is specified as the percentage of the power at a 
given wavelength that would be reflected by a mirror (of the same 
coating as the grating) that is diffracted into a particular order by the 
grating (that is, efficiency relative to a mirror).  Absolute efficiency is 
specified as the percentage of the power incident on the grating that is 
diffracted into a particular order by the grating. 

In addition to the wavelength and the diffraction order, grating 
efficiency depends on the incidence and diffraction angles α and β; if 
these angles are not explicitly stated, the standard configuration 
(namely the Littrow configuration, in which the incident and diffracted 
beams are coincident) will generally be assumed.  Unless otherwise 
noted on the curves themselves, all Newport efficiency curves are 
generated for the near-Littrow conditions of use with eight degrees 
between the incident and diffracted beams: α − β = 2K = 8°. 
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Generally diffraction gratings are polarizing elements, so that the 
efficiency in both polarizations should be considered: 

 

 P-plane TE light polarized parallel to grooves 

  S-plane TM light polarized perpendicular to grooves 

 
For each wavelength that has an efficiency specification, the following 
should be indicated: the wavelength, the efficiency (in percent), 
whether the efficiency specification is relative or absolute, the 
diffraction order, the polarization of the light, and the angles α and β.  
In some cases, the bandwidth of the exit slit in the spectrometer used to 
measure the grating efficiency may need to be called out as well. 

16.2. SUPPLEMENTAL SPECIFICATIONS 

 Additional specifications are sometimes required based on the particular 
application in which the grating is to be used. 

 

10. Blaze Angle.  Although it is better to specify diffraction efficiency, 
which is a performance characteristic of the grating, sometimes the 
blaze angle is specified instead (or additionally).  A blaze angle should 
be specified only if it is to be measured and verified (often done by 
measuring efficiency anyway), and a tolerance should be noted. In 
cases where both the diffraction efficiency and the blaze angle are 
specified, the efficiency specification should be controlling and the 
blaze angle specification should be for reference only. 

11. Coating Material.  Generally the Diffraction Efficiency specifications 
will dictate the coating material, but sometimes a choice exists and a 
particular coating should be specified.  Additionally, dielectric 
overcoatings may be called out that are not implied by the efficiency 
specifications.   

12. Scattered Light.  Grating scattered light is usually specified by 
requiring that the fraction of monochromatic light power incident on 
the grating and measured a particular angle away from the diffracted 
order falls below a certain upper limit.  The proper specification of 
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scattered light would call out the test configuration, the polarization 
and wavelength of the incident light, the incidence angle, the solid 
angle subtended by the detector aperture, and the dimensions of the 
exit slit.  Grating scatter is measured at Newport using red HeNe light. 

13. Cosmetics.  The cosmetic appearance of a diffraction grating does not 
correlate strongly with the performance of the grating, and for this 
reason specifications limiting the type, number and size of cosmetic 
defects are not recommended.  Nevertheless, all Newport gratings 
undergo a rigorous cosmetic inspection before shipment. 

14. Imaging Characteristics.  Concave holographic gratings may be 
aberration-corrected, in which case they can provide focusing without 
the use of auxiliary optics.  In these cases, imaging characteristics 
should be specified, generally by calling out the full width at half 
maximum intensity (FWHM) of the images. 

15. Damage Threshold.  In some instances, such as pulsed laser 
applications, diffracted gratings are subjected to beams of high power 
density that may cause damage to the delicate grating surface, in which 
case the maximum power per unit area that the grating surface must 
withstand should be specified. 

16. Other specifications. Other specifications that relate to the functional 
performance of the grating should be called out in the print.  For 
example, if the grating must perform in extreme environments (e.g., a 
satellite or space-borne rocket, high heat and/or humidity 
environments), this should be noted in the specifications. 

16.3. ADDITIONAL REQUIRED SPECIFICATIONS FOR CONCAVE 
ABERRATION-REDUCED GRATINGS 

 Concave aberration-reduced gratings, often used in constant-deviation and 
flat-field spectrograph mounts (see Sections 7.5.3 and 7.5.5), have imaging 
properties that are tailored to the specific geometry of the spectrometer; that is, 
the grating recording coordinates γ, rC, δ and rD depend on the use coordinates 
α, r, β and r′ (all of these quantities are defined in Chapter 7).  Consequently, a 
concave aberration-reduced grating requires additional specifications to be fully 
described. 
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 The cases for constant-deviation monochromators and flat-field 
spectrographs are given separately below.  In all cases, a clear optical schematic 
showing the quantities defined is highly recommended, especially to ensure that 
the definition of angles is understood. 

17. Constant-deviation monochromator gratings. Concave holographic 
gratings used in constant deviation monochromators should have the 
following three parameters specified (see Figure 16-1) to be defined 
uniquely: 

• the distance r from the entrance slit to the grating center (often 
called the entrance arm distance), 

• the distance r′ from the exit slit to the grating center (the exit arm 
distance), and 

• the angle 2K between these two arms (the deviation angle); 
alternatively, the half-deviation angle K may be specified provided 
it is clear which angle is called out. 

 

  

 

2 K

r

r′ 

exit 
slit 

entrance slit 

grating 

 
Figure 16-1.  Constant-deviation monochromator geometry.   The quantities that should 
be specified are the entrance arm distance r, the exit arm distance r′, and the angle 2K 
between these arms. 

 

18. Flat-field spectrograph gratings. Concave holographic gratings used in 
flat-field spectrographs require four parameters (see Figure 16-2): 
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• the entrance arm distance r, 

• the angle α the entrance arm makes with the grating normal, 

• the distance r′S from the grating center to the image (on the 
detector) of the shortest wavelength λS in the spectrum, and 

• the obliquity angle Φ of the detector (as described in 2.3.2). 
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Figure 16-2.  Flat-field spectrograph geometry.   The quantities that should be specified 
are the incidence angle α, the entrance arm distance r, the exit arm distance r′S for the 
shortest wavelength in the spectrum to reach the detector, and the obliquity angle Φ of 
the detector.  The detector is shown; the shortest and longest wavelengths λS and λL 
image at either end of the detector.  [The distance r′L from the grating center to the image 
of λL is not shown.] 

 

 An alternative set of parameters for defining a flat-field spectrograph is the 
set of quantities α, r, lH and βH, where α and r are as above and 

• the distance lH is measured from the grating center to the line 
defined by the detector, such that these two lines are 
perpendicular, and 

• the angle βH is the angle the line lH makes with the grating normal 
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(see Figure 16-3).   
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Figure 16-3.  Alternative flat-field spectrograph geometry.   A flat-field spectrograph can 
also be described uniquely by the following quantities: the incidence angle α, the 
entrance arm distance r, the distance lH (the line from the grating center to the line 
defined by the detector, such that these two lines are perpendicular), and the angle βH 
that the line lH makes with the grating normal.   

 

Converting from the parameter set in Figure 16-3 to that in Figure 16-2 can be 
accomplished using the formulas 

  r′S = lH sec(βH – βS), 
   (16-1) 
  r′L = lH sec(βH – βL). 
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APPENDIX A.  Sources of Error in 
Monochromator-Mode Efficiency 
Measurements of Plane Diffraction Gratings  

 

Jeffrey L. Olson, Newport Corporation 

 

 

 

 While simple in principle, measuring the efficiency of diffraction gratings is 
a complex process requiring precise methods to achieve acceptable results.  
Every optical, mechanical, and electronic component comprising an efficiency 
measuring system is a potential source of error.  Environmental factors may also 
contribute to the overall measurement uncertainty.  Each source of error is 
identified and its effect on efficiency measurement is discussed in detail.   

A.0. INTRODUCTION 

 In his 1982 book Diffraction Gratings, M.C. Hutley makes the following 
statement regarding the measurement of diffraction grating efficiency: 

 

“One seldom requires a very high degree of photometric accuracy in 
these measurements as one is usually content to know that a grating is 
60% efficient rather than 50% and the distinction between, say, 61% 
and 60% is of little practical significance.”175  

      

 While this statement may have been true at the time it was written, it is no 
longer the case today. Certain industries, such as laser tuning and 
telecommunications, demand gratings with efficiencies approaching theoretical 
limits.  The efficiency specifications for these gratings are well defined, and 

                                                           
175 M. C. Hutley, Diffraction Gratings, Academic Press (1982), p.168. 
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measurement errors as small as one percent may mean the difference between 
the acceptance and rejection of a particular grating.       

   In principle, measuring the efficiency of diffraction gratings is simple.  A 
ratiometric approach is used in which the energy of a diffracted beam is 
compared to the energy of the incident beam.  The incident beam may be either 
measured directly (absolute measurement) or indirectly (relative measurement, 
by reflection from a reference mirror).  Conversion from relative to absolute 
efficiency can be made easily by multiplying the known reflectance of the 
reference mirror by the relative efficiency of the grating.  (Exceptions to this 
rule have been noted, namely 1800 to 2400 g/mm gold or copper gratings 
measured at wavelengths below 600 nm).176     

 As mentioned in Section 11.2, a monochromator mode efficiency-
measuring instrument, in essence, is a double grating monochromator, with the 
grating under test serving as the dispersing element in the second 
monochromator.  The first monochromator scans through the spectral range 
while the test grating rotates in order to keep the diffracted beam incident upon 
a detector that remains in a fixed position throughout the measurement. 

 A typical efficiency measuring apparatus (see Figure A-1) consists of a 
monochromator, collimator, polarizer, grating rotation stage, grating mount,  
detector positioning stage, detector and associated optics, amplifier, and signal 
processing hardware.  Once the beam exits the monochromator it is collimated, 
polarized, and, if necessary, stopped-down to a diameter appropriate for the 
grating being tested.  The beam is then directed toward the grating to be tested 
where it is diffracted toward the detector.  The electronic signal generated by the 
detector is amplified, filtered, and presented to the user via any number of 
devices ranging from a simple analog meter to a computer.  In any case, a 
comparison is made between a reference signal, obtained by direct or indirect 
measurement of the incident beam, and the signal from the grating being tested. 

Efficiency measurement results are normally reported on a graph (see 
Figure A-2) with wavelength on the X-axis and percent efficiency (absolute or 
relative) on the Y-axis.  It is very unusual to see a published efficiency curve 
with error bars or some other indication of the measurement uncertainty.  It must 
be understood that these measurements are not exact, and may be in error by 
several percent.  A complete understanding of the measurement process as well 
as the sources of error and how to minimize them would be of great value to the 

                                                           
176 E. G. Loewen and E. Popov, Diffraction Gratings and Applications, Marcel Dekker, Inc. (1997), 
p. 415. 
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technician or engineer making the measurements as well as those involved in 
making decisions to accept or reject gratings based on efficiency.   

 

 

 
 

Figure A-1.  Typical monochromator-mode efficiency measuring apparatus.    

A.1. OPTICAL SOURCES OF ERROR 

A.1.1. Wavelength error 

 Perhaps the most obvious error of an optical nature is an error in 
wavelength.  If the monochromator does not accurately select the desired 
wavelength, efficiency peaks, anomalies, etc., will appear at the wrong spectral 
position on the efficiency curve.  If the grating being measured is rotated to the 
appropriate incident angle for a given wavelength, the diffracted beam may 
partially or totally miss the detector if the wavelength is not correct.  This is less 
of a problem in manually controlled instruments, since the operator can adjust 
the wavelength or grating rotation angle to obtain a maximum reading.  On an 
automated instrument, however, a significant error may result unless the 
instrument has the ability to “hunt” for the efficiency peak.   

Rotation stage 
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Figure A-2.  Typical efficiency curve.    

 

 Wavelength errors are usually caused by a failure of the monochromator 
indexing mechanism to move the grating to the correct rotation angle.  Most 
computer based monochromator systems employ correction factors or 
calibration tables in firmware to correct systematic wavelength errors.  Even so, 
many monochromators use open-loop stepper motor drives to position the 
grating.  Since there is no explicit feedback from the rotation mechanism, the 
controller must assume that the grating is in the correct position.  If the motor 
fails to move the proper number of steps due to binding in the mechanical 
system or for some other reason, the wavelength will be in error.   

 To ensure wavelength accuracy, periodic wavelength calibration should be 
done using a calibration lamp or other spectral line source.  The author has used 
the Schumann-Runge O2 absorption lines effectively for monochromator 
wavelength calibration in the far ultraviolet region near 193 nm.  The well-
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defined Schumann-Runge transitions occurring at 192.6 nm are especially 
useful spectral features.177 

A.1.2. Fluctuation of the light source intensity 

 One of the drawbacks of using a single detector system is that the light 
source intensity can change between the times the reference and sample 
measurements are made.  With filament lamps, the intensity is proportional to 
the power dissipated in the filament.  According to Ohm’s law, power P is the 
product of current I and voltage E, and voltage is the product of current and 
resistance R, therefore:   

  P = IE = I (IR) = I2R. (A-1) 

 Typically electrical power is applied to the lamp socket, rather than to the 
lamp directly.  The contact resistance between the lamp and socket can be 
significant and is prone to change over time.  If a constant voltage is applied to 
the socket and the contact resistance was to increase, the current, power, and 
lamp intensity will decrease as a result.  If a constant current is applied instead, 
no change in power will occur as the result of a change in contact resistance 
(provided the filament resistance remains constant).  For this reason current-
regulated, rather than voltage-regulated, power supplies are preferred whenever 
filament-type lamps are used.  A photo-feedback system, in which a detector 
monitors and controls the lamp intensity, is also a good choice.  Regardless of 
the type of light source used, it is always best that the sample and reference 
measurements be made in quick succession.      

A.1.3. Bandpass 

 As a rule, the bandpass of the light source should always be narrower than 
that of the grating under test.  The bandpass B of the grating under test is 
estimated by the angular dispersion D of the grating, the distance r from the 
grating to the detector aperture, and the width w′ of the exit aperture according 
to the equation: 

                                                           
177 R. C. Sze and C. A. Smith, “High-temperature absorption studies of the Schumann-Runge band 
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rD
wB

′
≈ . (A-2) 

 [Eq. (A-2) assumed the case where the aberrated image of the entrance slit is 
not wider than the exit aperture; see Section 8.3).]  

 Whenever a grating is measured using a source with a bandpass that is too 
broad, some of the outlying wavelengths will be diffracted away from the 
detector.  In contrast, when the reference measurement is made using a mirror or 
by direct measurement of the incident beam, no dispersion occurs.  
Consequently, the detector captures all wavelengths contained within the 
incident beam during the reference measurement, but not during the grating 
measurement (resulting in an artificial decrease in grating efficiency).  Another 
consequence of measuring gratings using a light source with a broad bandpass is 
that sharp efficiency peaks will appear flattened and broadened, and may be 
several percent lower than if measured using a spectrally-narrow light source.  
Efficiency curves should, but often do not, state the bandpass of the source used 
to make the measurement.  When using a monochromator, it is generally best to 
adjust the slits to obtain the narrowest bandpass that will provide an acceptable 
signal-to-noise ratio (SNR).  Alternatively, a narrow band spectral source, such 
as a laser or calibration lamp, may be used in conjunction with a 
monochromator or interference filter to eliminate unwanted wavelengths. 

A.1.4. Superposition of diffracted orders 

 According to the grating equation (see Eq. (2-1)), the first order at 
wavelength λ and the second order at wavelength λ/2 will diffract at exactly the 
same angle (see Section 2.2.2).  Therefore the light emerging from a 
monochromator exit slit will contain wavelengths other than those desired.  The 
unwanted orders must be removed in order to accurately determine the 
efficiency at the desired wavelength.  “Order-sorting” filters are most commonly 
used for this purpose.  These are essentially high-pass optical filters that 
transmit longer wavelengths while blocking the shorter wavelengths.   
 Another problematic situation arises when the adjacent diffracted orders are 
very closely spaced.  In this case, adjacent orders must be prevented from 
overlapping at the detector aperture, which would result in a significant error.  

                                                                                                                                  
of oxygen at ArF laser wavelengths,” J. Opt. Soc. Am. B7, 3, 462-475 (2000). 
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This situation can be avoided by ensuring that the bandpass of the source is less 
than the free spectral range of the grating being tested.   As shown in Section 
2.7, the free spectral range Fλ is defined as the range of wavelengths Δλ in a 
given spectral order m that are not overlapped by an adjacent order, expressed 
by Eq. (2-28): 

  Fλ  =  Δλ  = 
m
λ . (2-28) 

For an echelle being measured in the m = 100th order at λ = 250 nm, the free 
spectral range is 2.5 nm. The detector aperture must also be sufficiently narrow 
to prevent adjacent orders from being detected, but not so narrow as to violate 
the “rule” regarding the bandpass of the light source and grating under test.   

A.1.5. Degradation of the reference mirror 

 When a mirror is used to determine the incident light energy, its reflectance 
as a function of wavelength needs to be well characterized.  Mirrors tend to 
degrade over time due to atmospheric exposure, and if not re-characterized 
periodically, optimistic measurements of grating efficiency will result.  At the 
National Physical Laboratory (NPL) in England, an aluminum-coated silica flat 
was used as a reference mirror.  This is nothing new, but in this case the 
“buried” surface of the mirror was used as the mirror surface instead of the 
metal surface itself.  Since the aluminum is never exposed to the atmosphere, its 
reflectance is stable, and since the mirror was characterized through the silica 
substrate, its influence is automatically taken into account.178   The restriction in 
using the buried surface method is that the incident beam must be normal to the 
mirror surface to avoid beam separation caused by multiple reflections from the 
front and buried surfaces.  When an unprotected mirror surface is used as a 
reference, absolute measurements of its reflectance should be made on a regular 
basis. 

                                                           
178 M. C. Hutley, Diffraction Gratings, Academic Press (1982), p.169. 
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A.1.6. Collimation 

 If the incident beam is not reasonably well collimated, the rays will fall 
upon the grating at a variety of angles and will be diffracted at different angles.  
In the case of a diverging diffracted beam, the beam will spread, possibly 
overfilling the detector.  Since the reference beam does not encounter a 
dispersing element in its path (but the sample beam does), it is possible that all 
of the energy will be collected during the reference measurement but not during 
the sample measurement, causing the measured efficiency to be low.  

 Whenever a monochromator-based light source is used it is difficult, if not 
impossible, to perfectly collimate the beam emerging from the exit slit in both 
planes.  It is important to collimate the beam in the direction perpendicular to 
the grooves, but it is not as critical for the beam to be well collimated in the 
direction parallel to the grooves, since no diffraction occurs in that direction.  A 
limiting aperture may be used to restrict the beam size and prevent overfilling 
the grating under test. 

 It should be emphasized that beam collimation is not nearly as important in 
an efficiency measuring system as it is in an imaging system, such as a 
spectrograph.  It is only necessary to ensure that the detector collects all of the 
diffracted light.  The degree of collimation required largely depends on the 
dispersion of the grating under test, but in most cases a beam collimated to 
within 0.1o is adequate.  For example, an angular spread of 0.1o in a beam 
incident upon a 1200 g/mm grating measured in the 1st order at 632.8 nm 
(Littrow configuration) will produce a corresponding spread in the diffracted 
beam of less than 1 mm over a distance of 500 mm.   

A.1.7. Stray light or “optical noise” 

 The influence of stray radiation must always be taken into consideration 
when making efficiency measurements.  If the level of background radiation is 
very high, the detector may be biased enough to result in a significant error.  
This is especially true when simple DC detection methods are used.  Any bias 
introduced by background radiation must be subtracted from both the reference 
and sample measurements before the ratio is computed.  For example, if the 
background radiation equals 2% of the reference beam, and the grating being 
tested measures 50% relative efficiency, the actual efficiency is 48/98 or 49%.  
This represents an error of 1% of the full-scale measured efficiency.  In many 
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cases simply operating the instrument in a dark lab or enclosure is sufficient to 
reduce background light to insignificant levels.  Averaging is often used to 
“smooth out” noisy signals, but unlike other more random noise sources that 
tend to be bipolar, stray light-induced noise is always positive.  Averaging 
several measurements containing a significant level of optical noise may bias 
the final measurement.  In most cases, it is best to use phase-sensitive detection 
to remove the effects of unwanted radiation. 

A.1.8. Polarization 

 Most efficiency curves display the S and P as well as the 45-degree 
polarization efficiency vs. wavelength.  When making polarized efficiency 
measurements using an unpolarized source, it is necessary to use some form of 
optical element to separate the two polarization vectors.  It is critical that the 
polarizer be aligned as closely as possible to be parallel (P plane) or 
perpendicular (S plane) to the grooves or a polarization mixing error will result.  
To determine the 45-degree polarization efficiency of a grating, it seems easy 
enough to set the polarizer to 45 degrees and make the measurement, but unless 
the output from the light source is exactly balanced in both S and P planes, an 
error will result.   

Figure A-3 shows the effect of source polarization on the measured 
efficiency of a hypothetical grating having efficiencies of 90% in the P plane 
and 50% in the S plane at some arbitrary wavelength.  In one case the light 
source contains equal S and P intensities while the other has a 70:30 S to P ratio.  
In the case of the balanced light source, as the polarizer is rotated to 45o, the 
efficiency is 70%, exactly the average of the S and P measurements.  On the 
other hand, the unbalanced source results in a measured efficiency of 60%.  This 
represents an error of 10% of the full-scale measured value.  For that reason it is 
always recommended to make separate S and P measurements and then average 
them to determine the grating’s 45-degree polarization efficiency. 
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Figure A-3.  Efficiency comparison with balanced and unbalanced source polarization 
(0º = P, 90º = S).    

A.1.9. Unequal path length 

 An error can result in a single detector system purely as the result of the 
optical path being different between the reference and sample measurements.  
This is especially true at UV wavelengths where the atmospheric absorption is 
significant.  Different optical path lengths are not as much of a problem in dual 
detector systems since the relative calibration of the two detectors can 
compensate for atmospheric effects.   

A.2. MECHANICAL SOURCES OF ERROR 

A.2.1. Alignment of incident beam to grating rotation axis 

 It is critical to align the incident beam to the rotation axis of the grating 
stage and mount.  If not, the beam will “walk” across the grating surface at 
relatively low incident angles, and partially miss the grating surface at very high 
incident angles.  Since the incident and diffracted beams are displaced from 
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their correct location, it is entirely possible that all or part of the diffracted beam 
will miss the detector aperture. 

A.2.2. Alignment of grating surface to grating rotation axis 

 The effect of not having the grating surface located exactly over the rotation 
axis will be similar to that of not having the beam aligned to the grating rotation 
axis.  Optimally, a grating mount that references the grating’s front surface, 
rather than the sides or back of the grating substrate, may be used to ensure 
alignment.  This is often not practical since the contact points on the mount may 
leave an impression on the grating surface.   To avoid this problem, an inclined 
lip or rail is sometimes used that makes contact with the grating on the extreme 
outer edge only.  On beveled grating substrates this can be a source of error 
since the dimensional variation of the bevels can be significant.  If the grating 
mount does not reference the front surface, an adjustment must be provided in 
order to accommodate gratings of various thicknesses.   

A.2.3. Orientation of the grating grooves (tilt adjustment) 

 On grating mounts that use the substrate to locate the grating to be tested, 
the plane in which the diffracted orders lie will be tilted if the grooves are not 
properly aligned with the sides of the grating substrate. This may cause the 
diffracted beam to pass above or below the detector aperture. Most gratings do 
not have perfect alignment of the grooves to the substrate, so it is necessary to 
incorporate a method for rotating the grating a small amount in order to 
compensate for groove misalignment.   

A.2.4. Orientation of the grating surface (tip adjustment) 

 Due to some wedge in the grating substrate, for example, the grating 
surface may not be parallel to the grating rotation axis.   This will cause the 
diffracted beam to fall above or below the detector aperture.  On most grating 
mounts an adjustment is provided to correct this situation.  Ideally the grating 
tip, tilt, and rotation axes all intersect at a common point on the grating surface, 
but in fact it is extremely rare to find a grating mount in which the tip axis does 
so.  In most cases the tip axis is located behind or below the grating substrate, so 
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when adjusted, the grating surface will no longer lie on the rotation axis.  The 
ideal situation is one in which the grating is front-surface referenced on the 
mount so that no adjustment is needed. 

A.2.5. Grating movement 

 It is essential that the grating being tested be held securely in the mount 
during the testing process.  Vibration from motors and stages as well as the 
inertia generated by the grating as it is rotated may cause it to slip.  Any motion 
of the grating relative to the mount will result in alignment errors and invalidate 
any measurements taken after the movement occurred.      

A.3. ELECTRICAL SOURCES OF ERROR 

A.3.1. Detector linearity 

 In principle, all that is required to make satisfactory ratiometric 
measurements is a linear response from the sensing element and associated 
electronics.  Nearly all detectors have response curves that exhibit non-linearity 
near saturation and cut off.  It is extremely important to ensure that the detector 
is biased such that it is operating within the linear region of its response curve.  
In addition, the detector preamplifier and signal processing electronics must also 
have a linear response, or at least have the non-linearity well characterized in 
order for a correction to be applied.  Neutral density filters may be inserted into 
the optical path to verify or characterize the detection system linearity.   The 
following set of five calibrated neutral density filters is sufficient, in most cases, 
for verifying the detector response to within ± 1%: 
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Optical Density Transmission* 

0.1 79% 

0.3 50% 

0.6 25% 

1.0 10% 

2.0 1% 

* rounded to nearest whole percent. 

 

 Detector non-linearity becomes a major source of error when the reference 
and grating signals differ significantly in intensity.  Unless the linearity of the 
detector and associated electronics has been well established, using a mirror 
with a reflectance of 90% or higher as a reference may introduce an error if the 
grating being measured has an efficiency of 20%.  This is analogous to sighting 
in a rifle at 100 yards and using it to shoot at targets 25 yards away.   In some 
situations it is best to use a well-characterized grating as nearly identical to the 
grating to be tested as possible.  This method is especially useful for making 
“go/no-go” efficiency measurements.  If the reference grating is carefully 
chosen to be one that is marginally acceptable, then the efficiency measuring 
instrument will have its greatest accuracy at the most critical point.  All gratings 
measuring greater than or equal to 100% relative to the reference grating are 
assumed to be good and those below 100% are rejected.  Of course this method 
requires periodic recharacterization of the reference grating in order to maintain 
measurement integrity.       

A.3.2. Changes in detector sensitivity  

 Some efficiency measuring instruments use separate detectors for making 
the reference and grating measurements (these are not to be confused with 
systems that use secondary detectors to monitor light source fluctuations).  
Most, however, use a single detector for both the reference and grating 
measurements instead.  There are very good reasons for doing this.  First of all, 
detectors and the associated electronics are expensive, so using a single detector 
is far more cost effective.  Detector response characteristics change over time, 
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so frequent calibration is necessary in a dual-detector system to ensure that the 
photometric accuracy of each detector has not changed relative to the other.  By 
using the same detector for sample and reference measurements, photometric 
accuracy is not an issue, since an error in the reference measurement will also be 
present in the grating measurement and consequently nullified.        

A.3.3. Sensitivity variation across detector surface  

 A significant error can result if the reference or diffracted beam is focused 
down to form a spot that is much smaller than the detector’s active area.  Some 
detectors, especially photomultipliers, may exhibit a sensitivity variation 
amounting to several percent as the spot moves across the detector surface.  It is 
often sufficient to place the detector aperture far enough away from the detector 
such that the spot is defocused and just under-fills the active area.  Alternately a 
diffuser or integrating sphere is sometimes used to distribute the light more 
uniformly across the detector surface.      

A.3.4. Electronic noise  

 Any form of optical or electronic noise can influence efficiency 
measurements.  It is desirable to maintain the highest signal-to-noise ratio 
(SNR) possible, but often a trade-off must be made between signal strength and 
spectral resolution.  Decreasing the monochromator slit width in order to narrow 
the bandpass of the source results in a reduced detector output signal.  Care 
must be taken not to limit the intensity to a point where electronic (and optical) 
noise becomes a significant factor.  In most cases, an SNR value of 200:1 is 
adequate. 

A.4. ENVIRONMENTAL FACTORS 

A.4.1. Temperature 

 Normally it is not necessary to perform efficiency measurements in an 
extremely well regulated environment, but there are a few cases in which 
temperature control is needed.  Whenever very high spectral resolution 
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measurements are made (c. Δλ ≤ 1 nm), temperature variation within the 
monochromator may cause a significant wavelength drift.  Temperature 
fluctuations may cause optical mounts to expand or contract resulting in a 
displacement of the beam.  It is always a good idea to keep heat sources well 
away from all optical and mechanical components that may affect the grating 
being tested or the beam.  It is also wise to allow gratings that are to be tested to 
acclimate in the same environment as the test instrument.       

A.4.2. Humidity 

 Humidity is not usually a significant error source, but since it can affect the 
system optics and electronics, it merits mentioning.  A high humidity level may 
influence measurements at wavelengths where atmospheric absorption varies 
with relative humidity.  Low humidity promotes the generation of static 
electricity that may threaten sensitive electronic components.  In general, the 
humidity level should be maintained in a range suitable for optical testing.   

A.4.3. Vibration 

 Vibration becomes an error source when its amplitude is sufficient to cause 
the grating under test or any of the optical components to become displaced.  If 
the vibration is from a source other than the instrument itself, then mounting the 
instrument on a vibration isolated optical bench will solve the problem.  If the 
instrument itself is the vibration source, then the problem becomes a little more 
difficult.  Stepper-motors are most often used to rotate and translate the grating 
being tested, as well as tune the monochromator, select filters, etc.  As the 
motors ramp up to predetermined velocity, a resonant frequency is often 
encountered that will set up an oscillation with one or more mechanical 
components in the system.  While it is sometimes necessary to pass through 
these resonant frequencies, it is never advisable to operate continuously at those 
frequencies.  Most motion controllers have provisions for tuning the motion 
profile to minimize resonance. Some motion controllers allow micro-stepped 
operation of the motors, producing a much smoother motion.  Although they are 
generally more expensive, servo controllers, amplifiers, and motors provide 
exceptional accuracy and very smooth motion. 
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A.5. SUMMARY 

 Many of the error sources identified can be eliminated entirely, but only at 
the expense of decreased functionality.  Greater accuracy can be obtained using 
an instrument that operates at a fixed wavelength in a fixed geometry and is 
only used to test gratings that have identical physical properties.  When a large 
variety of gratings are to be tested, each with a different size, shape, groove 
frequency, wavelength range, test geometry, etc., it is not practical to construct a 
dedicated instrument for each.  In this case, a more complex instrument is 
required.  In specifying such an instrument, each source of error should be 
identified, and if possible, quantified.  An error budget can then be generated 
that will determine if the instrument is able to perform at the desired level.  Most 
likely it will not, and then a decision needs to be made regarding which features 
can be compromised, eliminated, or implemented on another instrument.  

 Disagreements often arise between measurements made of the same grating 
on different efficiency measuring instruments.  Slight differences in test 
geometry, bandpass, and beam size can have a surprisingly large effect on 
efficiency measurements.  What is sometimes difficult to understand is that it is 
possible for two instruments to measure the same grating and get different 
results that are valid!  

 Grating efficiency is largely determined by the groove properties of the 
master from which the grating was replicated, and to some degree the coating.  
It is very rare for a master, regardless of the process used to create it, to have 
perfectly uniform efficiency at every spot along its surface.  In some cases the 
efficiency may vary by several percent.  If a grating is measured using a small 
diameter beam, then these efficiency variations are very noticeable compared to 
measurements made using a larger beam.  If two different instruments are used 
to measure the same grating, it is possible that the beams are not exactly the 
same size or, in the case of a small beam diameter, are not sampling exactly the 
same spot on the grating surface.  Both instruments are correct in their 
measurements, but still do not agree.  For this reason, whenever comparisons 
between instruments are made, the differences in their configuration must be 
taken into consideration.   

 The goal of efficiency measurement is to characterize the grating under test, 
not the apparatus making the measurements.  For this reason, efficiency curves 
should report not only the relative or absolute efficiency vs. wavelength, but the 
properties of the instrument making the measurement as well.  Only then is it 
possible to reproduce the results obtained with any degree of accuracy.   
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APPENDIX B.  Lie aberration theory for grating 
systems 
 

 

   

 Besides the wavefront aberration theory described in Chapter 7, geometrical 
optics can be formulated in a manner in direct analogy with the Hamiltonian 
theory of classical dynamics.179  The basis for this analogy is the recognition 
that Fermat’s principle, which requires that a physical light path be an 
extremum, is equivalent to the requirement that this physical light path follow a 
trajectory governed by a Hamiltonian.  The coordinates and momenta of a 
particle in classical mechanics therefore correspond to the coordinates and 
direction cosines of a light ray in optics, and the tools of classical mechanics can 
be applied directly to geometrical optics.   
 The characterization of optical systems using Lie transformations, hitherto 
applied to dynamical systems, was first developed by Dragt, who considered 
axially symmetric systems.180  Later this formulation was extended by Goto and 
Kurosaki to optical systems without axial symmetry (but with a plane of 
symmetry).181  
 Dragt considered the coordinates x and y of a point in the object plane, as 
well as their direction cosines p and q, as the object phase space variables and 
primed quantities (x′, y′, p′ and q′) as their corresponding image phase space 
variables (see Figure B-1), and expressed the transformation of the ray in object 
space to the ray in image space (due to the optical system) as 

  W′  = M w (B-1) 

                                                           
179 A. J. Dragt, E. Forest and K. B. Wolf, “Foundations of a Lie algebraic theory of geometrical 
optics,” in Lie Methods in Optics, J. J. Sanchez-Mondragon and K. B. Wolf, eds. (Springer-Verlag, 
Berlin, 1984), ch. 4. 
180 A. J. Dragt, “Lie algebraic theory of geometric optics and optical aberrations,” J. Opt. Soc. Am. 
72, 372-379 (1982). 
181 K. Goto and T. Kurosaki, “Canonical formulation for the geometrical optics of concave 
gratings,” J. Opt. Soc. Am. A10, 452-465 (1993). 
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where M is a mapping (or simply map), an operator that transforms coordinates 
in object space to corresponding coordinates in image space.   
 A transformation that maps coordinates in object space into coordinates in 
image space according to Fermat’s principle is called symplectic.  Dragt and 
Finn showed in 1976 that a symplectic map can be expressed in terms of Lie 
transformations.182  More specifically, this map can be expressed as the product 
of Lie transformations, each of which is homogeneous in the object space 
coordinates (that is, all terms in each Lie transformation are of the same power 
in the independent variables).  Furthermore, truncating the product at any power 
leaves a symplectic transformation, so lower-order imaging properties can be 
examined without considering the higher-order Lie transformations in the map.  
Goto and Kurosaki used Dragt’s formalism to derive, using Lie algebraic theory 
rather than wavefront aberration theory, equations that are formally identical to 
the aberration coefficients F20, F02, F30, etc. seen in Chapter 7. 
 

φ 

θ y 

x

z

y

x 

 
Figure B-1. Definition of the object space variables.  The optical ray in object space has 
coordinate (x, y) in the object plane and direction defined by angles θ and φ (shown), 
whose direction cosines are p and q.   

 

                                                           
182 A. J. Dragt and J. M. Finn, “Lie series and invariant functions for analytical symplectic maps,” J. 
Math. Phys. 17, 2215-2227 (1976). 
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 The transformation from object phase space to image phase space may be 
represented as a sequence of operations; for example, for diffraction by a 
grating, these operations are (in sequence)  

1. transit from the object plane to the grating, through the distance r, 

2. rotation, through the angle α, to a coordinate frame centered at the 
grating center and oriented with an axis along the grating normal, 

3. diffraction in this coordinate frame,  

4. rotation through the angle β, and 

5. transit from the grating to the image plane, through the distance r′. 
 An advantage of the Lie transformation approach over the wavefront 
aberration technique is that general points (x, y) in the object plane are naturally 
considered; which this is also true of wavefront aberration theory, the algebra is 
cumbersome and, as a result, most authors consider only a point source in the 
dispersion plane.  
 Another immediate advantage of the Lie transformation approach is that 
systems with more than one optical element can be addressed in a 
computationally straightforward manner, simply by appending transformations 
(in the sequence in which the optical ray encounters the optical elements).183  
Using wavefront aberration theory this is not straightforward, in large part 
because the grating surface coordinates appear explicitly in the optical path 
difference (see Eq. (7-5)).  Many researchers overcame this complication by 
imposing intermediate foci between successive elements,184 though Chrisp 
introduced the use of toroidal reference surfaces and provided an important 
advance in the development of wavefront aberration theory for multielement 
systems.185   

                                                           
183 C. Palmer, W. R. McKinney and B. Wheeler, "Imaging equations for spectroscopic systems 
using Lie transformations. Part I - Theoretical foundations," Proc. SPIE 3450, 55-66 (1998). 
184 T. Namioka, H. Noda, K. Goto and T. Katayama, “Design studies of mirror-grating systems for 
use with an electron storage ring source at the Photon Factory,” Nucl. Inst. Meth. 208, 215-222 
(1983). 
185 M. Chrisp, “The theory of holographic toroidal grating systems,” Ph. D. dissertation, U. London 
(1981); M. Chrisp, “Aberrations of holographic toroidal grating systems,” Appl. Opt. 22, 1508-1518 
(1983). 
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 As an example of the power of Lie algebraic techniques in the analysis of 
multielement optical system, below is the equation for defocus for a system of 
two aberration-reduced concave holographic gratings:186 
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Here the subscripts on the angles and distances refer to each grating, and we 
have defined  

  21 rrD +′=  (B-3) 

as the distance between the two gratings.  The quantity ][
2
iA  depends on the 

substrate curvature and groove pattern for the ith grating. 
 

 

                                                           
186 C. Palmer, B. Wheeler and W. R. McKinney, "Imaging equations for spectroscopic systems 
using Lie transformations. Part II - Multi-element systems," Proc. SPIE 3450, 67-77 (1998). 
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INDEX 
 

 

A 
aberration, 91 
aberration coefficient, 91 
Abney mount, 101 
additive dispersion, 81 
anamorphic magnification, 36 
angle, sign convention for, 19, 90 
angular deviation, 23, 106, 130 
angular dispersion, 27 
anomalies, 126, 147 

Rayleigh, 147 
resonance, 147 
threshold, 148 

astigmatism, 91 
astronomy 

ground-based, 204 
space-borne, 208 

atomic spectroscopy, 197 

B 
'B' engine, 44 
bandpass, 33 
bandwidth, 119 
blaze angle, 38 
blaze condition, 38 
blaze wavelength, 39, 125 
blazing, 16, 123, 142, 143 

C 
camera, 76 
Carpenter prism.  - see grism 
cementing, 64 
classical diffraction, 22 
classical equivalent grating, 53, 86 

Coddington equations, 92 
collimator, 76 
colorimetry, 199 
comets, 215 
concave grating, 87 
conical diffraction, 22 
conservation of energy, 145 
constant-deviation monochromator, 

106 
constant-scan monochromator, 82 
curvature, of concave blank, 87 
Czerny-Turner monochromator, 76, 

185 

D 
defocus, 91 
demultiplexer, 210 
deviation angle, 23, 106 
dielectric coatings, 145 
diffraction, 19 

angle, 90 
classical, 22 
conical, 22 
in-plane, 22 
limit, 110 
order, 22, 201 

existence, 24 
existence, 146 
overlapping, 25 
propagation, 146 
zero, 25 

dispersion, 27 
additive, 81 
angular, 27 
linear, 28  
of light by grating, 22 
plane of, 88 
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reciprocal linear, 29 
subtractive, 81 

double monochromator, 80 

E 
Eagle mount, 101 
Ebert-Fastie monochromator, 77, 185 
echelle, 37, 45, 191 
effective spectral bandwidth, 119 
efficiency, 123 

absolute, 123, 172 
anomalies, 172 
conservation of energy, 145 
curve, 124, 172 
measurement of, 172 

errors in, 231 
reciprocity theorem, 145 
relative, 123, 172 

emission spectrum (or line), 199 
errors in efficiency measurements, 231 
excitation spectrum, 199 

F 
ƒ/number, 35 
facility, 55 
Fermat's principle, 89 
filter (grating), 209 
first generation holographic grating, 53, 

86, 96 
flat-field spectrograph, 59, 103 
fluorescence spectroscopy, 199 
focal distance, 92 
focal length, 34 
focal ratio, 35 
Foucault knife-edge test, 173 
free spectral range, 37 
fringe pattern, 50 
full spectral bandwidth, 119 
full width at half maximum, 119 
full width at zero height, 119 
FWHM, 119 

FWZH, 119 

G 
ghosts, 44 

Lyman, 167, 170 
Rowland, 43, 167, 168 

grass, 170 
grating, 14, 19 

anomalies, 147 
as beam splitter, 211 
as filter, 209 
as optical coupler, 212 
blazing, 46 
cementing, 64 
classical, 86 
cleaning, 144 
coating, 63  

dielectric, 145  
special overcoatings, 185 

concave, 85, 186 
dielectric coatings, 145 
echelle, 37, 45, 191 
efficiency, 56 
equation, 22 
fingerprints on, 144 
for laser tuning, 201 
grazing incidence, 191 
groove  

frequency, 21, 59, 248 
pattern, 59 
profile, 57 

handling, 217 
holographic, 49 

blazing, 143 
classification, 52  
first generation, 53, 86 
modulation, 134 
recording process, 55 
second generation, 54, 86 
vs. ruled, 56 

in fiber-optic telecommunications, 
209 
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in metrology, 212 
inspection, 66 
interference (holographic), 18 
master, 14, 43, 49 

manufacture time, 61 
modulation, 134 
mosaic, 205 
mount, 75 

terminology, 75 
with concave grating, 101 
with plane grating, 75 

normal, 19, 88 
original, 14 
overcoating, 143 
parting agent, 64 
pitch, 21, 248 
plane, 75, 185 
reflection, 14 
replica, 14, 61, 63 
ruled, 43 
scattered light, 57 
selection, 213 
separation, 65 
Sheridon, 52 
special overcoatings, 185 
special sizes, 215 
specifications for, 221 
submaster, 64 
substrate shape, 60 
tangent plane, 89 
testing, 46 
transmission, 14 
varied line-space (VLS), 86 
VLS, 86 
normal, 88 

grating equation, 21 
for Littrow configuration, 23 
in optical media other than air, 189 

grating normal, 19 
grating prism.  – see grism 
grazing incidence system, 191 
grism, 189 
groove frequency, 21, 248 

groove spacing, 16, 19 
precision (ruled grating), 17 
variations in, 168, 170 

grooves per millimeter, 21, 248 

H 
handling gratings, 217 
holographic grating, 49 

I 
ICP, 198 
imaging spectrograph, 105 
incidence angle, 19, 90 
inductively coupled plasma, 198 
in-plane diffraction, 22 
instrumental stray light, 40, 151 

measurement, 181 
interferometric control, 44, 45 
inter-order scatter, 179 
ion etching, 57, 143 

K 
knife-edge test, Foucault, 173 

L 
laser tuning, 201 
Lie aberration theory, 247 
limit of resolution, 30,  – see resolution 
line curvature, 92 
linear dispersion, 28 

reciprocal, 29 
linespread function, 111 
Littrow blaze condition, 38 
Littrow configuration, 23 

angular dispersion, 28 
for laser tuning, 201 
Rowland ghosts in, 169 

Littrow monochromator, 79 
Lyman ghosts, 170 
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M 
magnification 

anamorphic, 36 
sagittal, 112 
tangential, 112 

Mann engine, 44 
master grating, 14, 43, 49 
merit function, 99 
Michelson engine, 44 
modulation, 134 
molecular laser tuning, 203 
molecular spectroscopy, 197 
Monk-Gillieson monochromator, 78 
monochromator, 75 

double, 80 
constant-deviation, 106 
constant-scan, 82 
Czerny-Turner, 76 
Ebert-Fastie, 77 
Littrow, 79 
Monk-Gillieson, 78 

mosaic grating, 205 
multiplexer, 210 

O 
obliquity factor, 29 
optical spectrum analyzer, 211 
order. – see diffraction order 
order sorting, 27, 37 

P 
parting agent, 64 
Paschen-Runge mount, 101 
peak wavelength, 125 
photoresist, 51 
pitch, 19, 21, 248 
plane grating, 75, 87 
plate factor, 29 
polarization, 125, 172 

conversion, 149 
polychromator, 75 
principal plane, 88 
prism, 189 
pulse compression and stretching, 203 

R 
radius, of concave blank, 87 
Raman gratings, 170 
Raman spectroscopy, 82, 200 
Rayleigh anomalies, 147 
Rayleigh criterion, 30 
reciprocal linear dispersion, 29 
reciprocity theorem, 145 
reflectance values, for various metals, 

251 
reflection grating, 19 
replica, 14, 16, 63 
replication, 16 

tree, 66 
replication process, 63 
resolution, spectral 32 

and resolving power, 33 
resolving power, 30, 43, 44, 186 

and spectral resolution, 33 
maximum theoretical, 31 
measurement, 177 

resonance anomalies, 147 
Rowland circle spectrograph, 101 
Rowland ghosts, 168, – see ghosts 
ruling engine, 43 

S 
sagittal focal distance, 92 
sagittal focusing, 96 
sagittal plane, 88 
sagittal radius, of blank, 87 
satellites, 170 
scan angle, 23 
scattered light, 40, 151, 152 

measurement of, 179 
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second generation holographic grating, 
54 

servo control systems, 16 
Sheridon grating, 52 
signal-to-noise ratio (SNR), 40 
slit function, 183 
Snell's law, 189 
SNR (signal-to-noise ratio), 40 
solvents (for cleaning gratings), 144 
specifications for gratings, 221 
spectral order. – see diffraction order 
spectrograph, 75, 83 

flat-field, 103 
imaging, 105 
Rowland circle, 101 
Wadsworth, 103 

spectrometer, 75 
spectroscopy, 197 

atomic, 197 
fluorescence, 199 
molecular, 197 
Raman, 200 

spectrum analyzer, 211 
specular reflection, 22 
S-plane, 203 
spot diagram, 109 
SPR, 149 
SRE (stray radiant energy), 151 
stigmatic image, 91 
stray light, 40, 58, 151 

measurement of, 181 
stray radiant energy (SRE), 151 
submaster, 64 

subtractive dispersion, 81 
surface microroughness, 152 
surface plasmon resonance (SPR), 149 

T 
tangent plane, of grating, 89 
tangential focal distance, 92 
tangential focusing, 96 
tangential plane, 88 
tangential radius, of blank, 87 
target pattern, 214 
threshold anomalies, 148 
transfer coating, 64 
transmission grating, 19 

V 
varied line-space (VLS) grating, 47, 86 
vibration, 17 
VLS (varied line-space) grating, 47, 86 

W 
Wadsworth spectrograph, 103 
wavefront testing, 175 
Wood’s anomalies, 126 

Z 
zero order, 22, 25 

 


